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Abstract: The research was conducted at the Department of Agronomy and Agricultural Extension, Rajshahi Universi-
ty, from December 2021 to April 2022. The objective was to develop a fuzzy expert system for site-specific N fertilisation 
using leaf colour code (RGB) and irrigation frequencies for maize yield. The experiment encompassed two primary 
factors: nitrogen fertiliser application rates (N1: 100%, N2: 75%, N3: 50% of conventional rates) and irrigation frequencies 
(I1: 100%, I2: 75%, I3: 50% of pan evaporation). A completely randomized design (CRD) with three replications was used 
to arrange the experimental pots, each receiving recommended doses of phosphorus, potassium, and sulfur, with urea 
applied per treatment instructions. Results revealed significant chlorophyll content and grain yield differences among 
the various nitrogen fertiliser rates. The highest grain yield (219.27 g·pot–1) was observed with N1, whereas the lowest 
(186.6 g·pot–1) was with N3. Similarly, irrigation frequencies significantly influenced chlorophyll content and cob cha-
racteristics, with I1 resulting in the highest grain yield (211.27 g·pot–1) and I3 the lowest (184.6 g·pot–1). Furthermore, 
the interaction between fertiliser application rates and irrigation frequencies had notable effects on various parameters, 
leading to the highest grain yield of 227.62 g·pot–1 with the combination of N1 and I1 and the lowest (168.00 g·pot–1) 
with N3 I3. The agricultural experiments were facilitated using the Matlab fuzzy toolbox, employing the Mamdani in-
ference method. Fuzzy rules were delineated for nitrogen application rates and irrigation frequencies, with three fuzzy 
sets each. Membership functions were developed utilising Matlab's fuzzy interface system (FIS) editor and membership 
function editor, optimising leaf chlorophyll content, evaporation rate as input tiger N fertilisation, and irrigation fre-
quencies as output for precise maize production in Bangladesh. 
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In the realm of agricultural innovation, precision 
farming techniques have become increasingly im-
perative for enhancing crop productivity and sus-
tainability, particularly in  regions like Bangladesh, 
where agricultural resources are finite and the pop-
ulation's reliance on  staple crops such as  maize 
is significant (Hossain et al. 2021). Within this con-
text, the integration of advanced technologies such 
as fuzzy expert systems (FES) holds immense prom-
ise for optimising agronomic practices, particularly 
in  the realm of  nitrogen (N) fertilisation, a  criti-
cal determinant of  maize yield and quality (Mana 
et al. 2024 ). 

This manuscript delves into the pioneering re-
search conducted in  Bangladesh, focusing on  de-
veloping and applying a novel fuzzy expert system 
tailored for site-specific N  fertilization in  maize 
cultivation. Unlike traditional approaches that rely 
solely on conventional agronomic practices, this sys-
tem incorporates innovative elements such as RGB 
(red-green-blue) colour codes and precise irrigation 
schedules to fine-tune N application rates, thereby 
maximising crop yield while minimising environ-
mental impact (Dahal et al. 2020).

Nutrient management, an  essential component 
of precision agronomy, entails the precise applica-
tion of  fertilizers tailored to  the specific require-
ments of  crops. Farmers can customize nutrient 
applications by  comprehending the intricate in-
teractions among soil health, plant needs, and en-
vironmental factors, thereby averting overuse and 
reducing nutrient runoff. This practice amplifies 
crop yields and fosters environmental preservation 
by  curbing soil degradation and water pollution 
(Rahman et al. 2022).

A crucial facet of this optimisation process revolves 
around the discerning application of fertilizers, with 
nitrogen playing a pivotal role in the growth and de-
velopment of crops such as maize. Conventional ni-
trogen fertilisation methods often lack the precision 
necessary for optimal crop health, thus prompting 
the exploration of  innovative approaches (Giorda-
no et al. 2021). This study delves into the evolution 
of a fuzzy expert system devised to streamline de-
cision-making in site-specific nitrogen fertilisation 
for maize cultivation within the realm of precision 
agriculture in  Bangladesh, with RGB color codes 
serving as a primary input (Figure 1).

Bangladesh, characterised by  diverse agroeco-
logical zones and varying soil conditions, poses 
a  distinct set of  challenges for farmers striving 

to  refine nitrogen application strategies (Jahan 
et  al.  2018). Incorporating RGB colour codes de-
rived from on-site images of maize plants furnish-
es a  dynamic and visually comprehensive dataset 
for analysis (Figure 1). These codes capture subtle 
variations in plant health and vigour, offering a non-
invasive and real-time approach to assessing the ni-
trogen needs of maize crops.

Traditionally, plant nutrient assessments have re-
lied on labour-intensive and time-consuming meth-
ods, often resulting in delayed insights into nutrient 
deficiencies (Henry 2020). However, the integration 
of RGB colour information presents a promising al-
ternative, leveraging the visual cues inherent in plant 
foliage. Derived from on-site images, RGB  colour 
codes serve as a rich data source that can be anal-
ysed to infer nutrient status (Barbedo 2019).

In precision agriculture, optimising water manage-
ment is crucial for enhancing crop productivity and 
resource efficiency, particularly amid rising global 
populations and unpredictable climate patterns 

Figure 1. Use of RGB colour code to determine foliar 
greenness

X = 74, Y = 209
HEX #009900
RGB (0, 153, 0)
CMYK (100, 0, 100, 40)
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(Rastogi et al. 2024). Evaporation pan readings serve 
as reliable indicators of atmospheric water demand 
and, consequently, the potential water requirements 
of crops (Krishna 2019). By incorporating these read-
ings into irrigation scheduling, real-time adjustments 
can be made to ensure crops receive optimal water 
tailored to  their growth stages and environmental 
conditions. Moreover, the strategic application of ni-
trogen fertiliser complements this approach, given 
nitrogen's pivotal role in plant growth and water-use 
efficiency (Wang et  al.  2017). Synchronising nitro-
gen application with the irrigation schedule based 
on evaporation pan readings thus presents a holistic 
strategy to enhance crop health, nutrient absorption, 
and overall agricultural sustainability. 

In addressing the inherent uncertainty and im-
precision in  agricultural data, fuzzy expert sys-
tems emerge as powerful tools (Janssen et al. 2010). 
By  applying fuzzy logic principles within an  ex-
pert system framework, these systems can better 
handle the vagueness inherent in colour-based as-
sessments, providing a more nuanced and accurate 
representation of  nutrient conditions. Fuzzy logic 
(FL) is  a  precise problem-solving technique that 
handles numerical data and linguistic knowledge 
simultaneously. It  offers a  method for controlling 
complex systems without requiring precise math-
ematical descriptions, resembling human reasoning 
in its ability to handle uncertainties, vagueness, and 
judgments. Originating from the work of  Profes-
sor Dr. Lotfi Zadeh at the University of California, 
Berkeley, in  1965 (Zadeh 1965), fuzzy logic inte-
grates intermediate possibilities between digital 
values, departing from the binary logic foundation 
of modern computers (Figure 2).

In line with the preceding discussion, the advance-
ment described involves a  multifaceted approach 
encompassing the design of a fuzzy logic system, its 
integration into an expert system architecture, rule-
based development, and the incorporation of  do-
main expertise. A  feedback mechanism within the 
system facilitates its adaptability and learning over 
time, ensuring continual enhancement and rele-

vance in the dynamic agricultural landscape (Araú-
jo et al. 2021). The overarching objective of this pro-
gression is to craft a  robust and user-friendly tool 
empowering farmers and agronomists to make in-
formed decisions regarding nutrient management. 
By  leveraging the capabilities of  fuzzy expert sys-
tems alongside RGB colour codes, this innovative 
approach holds the potential to  revolutionise on-
site nutrient assessments, fostering more efficient 
and precise agricultural practices conducive to sus-
tainable crop production (Fawzy et al. 2022). 

The evaluation of the fuzzy expert system entails 
an exhaustive exploration of  fuzzy logic principles 
and their integration into the expert system archi-
tecture. Drawing on  domain-specific knowledge 
from agronomists and farmers, the system estab-
lishes a resilient rule base linking RGB colour codes 
to site-specific nitrogen fertilisation recommenda-
tions (Tan et al. 2022). 

The system's adaptive nature, facilitated by a feed-
back mechanism, ensures ongoing learning and re-
finement of recommendations based on real-world 
performance. The implications of  this evolutionary 
journey extend beyond mere technological innova-
tion; they underscore the potential to revolutionise 
decision-making processes for farmers, enabling 
them to  achieve both economic and environmen-
tal sustainability in  their agricultural practices. 
As we explore the fuzzy expert system's evaluation, 
we  aspire to  contribute to  the ongoing dialogue 
on precision agriculture, offering a practical solution 
tailored to the unique challenges of nitrogen fertili-
sation in maize cultivation in Bangladesh.

This research investigates strategies to facilitate the 
efficient transfer and adoption of  fuzzy expert sys-
tems for fertiliser application and optimal irrigation 
management for maize production in Bangladesh.

MATERIAL AND METHODS

Plant materials and growth condition. The re-
search was carried out within a controlled environ-
ment in a net house of  the Agronomy Field Labo-
ratory, Department of Agronomy and Agricultural 
Extension, Rajshahi University, Rajshahi, during the 
December 2021 till April 2022, utilising loamy sand 
soil obtained from the nearby experimental field. 
The soil composition contained (gm·kg–1) 0.4 or-
ganic carbon, 0.7 nitrogen, 1.8 ppm K, 7.5% Ca, and 
negligible phosphorus. The soil exhibited a slightly 
alkaline pH level of 7.6 and an electrical conductivity 

Figure 2. The main difference between fuzzy logic and 
Boolean logic

Boolean logic

Fuzzy logic
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of 0.04 milliSiemens (mS) per cm (mS·cm–1). Plastic 
pots, measuring 30 cm in height and 25 cm in diam-
eter, were filled with 15 kg of air-dried, free-draining 
soil for the experiment.

Hybrid maize variety NH-7720, marketed by Syn-
genta Bangladesh Ltd., was used. The experiment 
encompassed three nitrogen fertiliser application 
rates (N1: 100%, N2: 75%, N3: 50% of  conventional 
rates) and three irrigation frequencies (I1: 100%, 
I2: 75%, I3: 50% of pan evaporation). A completely 
randomized design (CRD) with three replications 
was utilised to arrange the experimental pots. Each 
pot received recommended doses of  phosphorus, 
potassium, sulfur, and organic fertiliser, while urea 
and irrigation were applied as  per treatment in-
structions. 

The collected data were analysed statistically 
following the analysis of  variance (ANOVA) tech-
nique, and the mean differences were adjudged us-
ing Duncan's Multiple Range Test (DMRT), using 
SPSS statistical software (version 22.0).

Determination of leaf chlorophyll content. The 
nitrogen content of  maize leaves was determined 
using digital image analysis based on  the numeric 
values of  RGB colours. The analysis was conduct-
ed using RGB colour picker software (version 1.0) 
on scanned images of the maize leaves (Figure 3). The 

following formula, as described by Ali et al. (2013), 
was used for the determination of nitrogen content:

ChN G R B
RGB � � �

2 2
	 (1)

where: ChNRGB – the chlorophyll content; G – green; R – 
red; B – blue

Irrigation measurement with evaporation pan. 
Irrigation water requirement was calculated based 
on  cumulative pan evaporation (CPE). The daily 
pan evaporation was measured from an  evapora-
tion pan and rainfall was measured using a standard 
rain gauge (Figure. 4) Pan evaporation was adjusted 
by using the following equation (Michael 1985):

CPE EV Kp p� � 	 (2)

where: EVp – pan evaporation; Kp – pan co-efficient ( 0.7.) 

Collection of  experimental data. Plant physi-
ological parameters: Leaf chlorophyll content, yield 
components and yield: Number of  grains cob–1, 
1  000 grain weight (g), grain yield (t·ha–1), stover 
yield (t·ha–1) and Biological yield (t·ha–1) were re-
corded. 

Computerised experimental setup. The fuzzy 
logic toolbox within Matlab was utilised to  define 
the membership functions and construct the fuzzy 
rule-based system. Several sequential steps were 
undertaken to compute the output of this fuzzy in-
ference system (FIS). Initially, a  set of  fuzzy rules 
was determined. Subsequently, the input data 
was fuzzified using the input membership func-
tions. Following this, the rule strength was calcu-
lated by aggregating the fuzzified inputs according 
to  the  fuzzy rules. Then, the consequence of  each 
rule was determined by combining the rule strength 
with the output membership functions. Finally, the 
output distribution was obtained by aggregating all 
the consequences.

Fuzzy logic control system. Figure 5 illus-
trates the structure of a  fuzzy logic control sys-
tem. The development of  fuzzy rule-based systems 

Figure 3. (A) Scanned image of the maize leaf, (B) mea-
surement of  the composition of  red, blue and green 
colours using RGB color picker software

Colour picker from image

(A)

(B)

Figure 4. Schematic diagram of the evaporative pan

Water level

50 cm
100 cm
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(FRBS) comprises four main components: An input 
processor (or fuzzification), a set of linguistic rules, 
a  method of  fuzzy inference, and an  output pro-
cessor (or  defuzzification) that generates an  actual 
number as output.

Membership function. A fuzzy set membership 
function serves as a generalisation of the indicator 
function for classical sets. It represents the degree 
of truth as an extension of valuation in fuzzy logic. 
The membership function applies across the do-
main of all possible values (Zadeh 1965).

Input and fuzzification. The input invariably 
consists of a crisp numerical value confined to the 
input variable's discourse universe. Fuzzification in-
volves allocating the crisp input into the appropri-
ate fuzzy set.

Output and defuzzification. The outcome mani-
fests as  fuzziness in  the degree of  membership 
in the qualifying linguistic set. The process of con-
verting a fuzzy quantity into a crisp value is termed 
the defuzzification of a  fuzzy set. The controller's 
output undergoes defuzzification to be  presented 
in crisp form.

RESULTS AND DISCUSSION

Plant response to  experimental treatments. 
This section presents the outcomes of  the experi-
mental treatments administered to  the plants, fo-
cusing on  their responses and performance under 
various conditions. It  encompasses observations 
related to growth parameters, yield, and any other 
relevant plant metrics.

Chlorophyll content (ChNRGB). The chlorophyll 
content (ChNRGB) in  maize leaves was evaluated 
at 21 and 42 days after sowing (DAS), considering 
varying nitrogen fertiliser rates and irrigation fre-
quencies. For N1, the maximum chlorophyll con-
tents were recorded at  76.6 DAS and 78.83 at  21 
and 42  DAS, while the corresponding minimum 

values were 59.57 and 67.95 for N3. Regarding ir-
rigation frequency, I1 exhibited the highest levels 
at 73.87 and 77.08, contrasting with I3, which yield-
ed the lowest at  62.15 and 67.95. The interaction 
between N1 and I1 displayed the highest content 
at 78.63 and 80.5, respectively, while N3 and I3 ex-
hibited the lowest at 43.11 and 57.

The observed differences in  chlorophyll content 
across different nitrogen fertiliser rates highlight the 
significant impact of nitrogen availability on plant 
photosynthetic activity. Our results are consistent 
with the findings of  Urban et  al.  (2021) and Mu-
hammad et al. (2022), who also reported that higher 
chlorophyll content at  higher nitrogen application 
rates compared to  lower rates suggests that ad-
equate nitrogen application promotes chlorophyll 
synthesis and accumulation in maize leaves, thereby 
enhancing photosynthetic efficiency and potentially 
leading to increased biomass production and yield. 
Similarly, the variations in chlorophyll content as-
sociated with different irrigation frequencies under-
score the importance of  water management in  in-
fluencing plant physiological processes. Our results 
align with the findings of Chen et al. (2023) and Lan 
et al. (2024), who demonstrated that higher chloro-
phyll levels observed under more frequent irriga-
tion compared to  less frequent irrigation indicate 
that adequate water availability positively influences 
chlorophyll synthesis and retention in maize leaves, 
thus supporting optimal photosynthetic activity and 
plant growth. Furthermore, the interaction between 
nitrogen fertiliser rates and irrigation frequencies 
reveals synergistic effects on  chlorophyll content. 
This finding is consistent with the number of previ-
ous results (Nasar et al. 2020; Candiani et al. 2022; 
Ye et  al.  2022), emphasising the combined effects 
of nutrient and water management on chlorophyll 
content in  plants. The highest chlorophyll levels 
observed under the combination of N1 and I1 sug-
gest that optimal nitrogen availability and sufficient 

Crisp input Crisp output

Fuzzy input set

Fuzzifier

Rules

Intelligence Fuzzy output set

Defuzzifier

Figure 5. Fuzzy Logic controller block diagram
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water supply promote maximal chlorophyll accu-
mulation in  maize leaves. Conversely, the lowest 
chlorophyll content observed under the combina-
tion of N3 and I3 indicates that inadequate nitrogen 
supply and limited water availability negatively im-
pact chlorophyll synthesis and retention, potentially 
compromising plant photosynthetic capacity and 
overall growth performance.

Incorporating fuzzy expert systems in  decision-
making for site-specific nitrogen fertilisation, guided 
by RGB colour code analysis, has positively affected 
chlorophyll content in  maize crops. Chlorophyll 
serves as a vital indicator of plant health and pho-
tosynthetic activity, which is crucial for overall crop 
performance. The nuanced and adaptable approach 
facilitated by  fuzzy logic has played a  pivotal role 
in  optimising nitrogen application, leading to  en-
hanced chlorophyll synthesis. Real-time feedback 
from RGB colour code analysis has enabled more 
precise assessments of  chlorophyll levels, ensur-

ing nitrogen is applied following the specific needs 
of each plot (Zermas et al. 2020). This targeted ap-
proach has likely bolstered photosynthetic efficien-
cy, consequently improving chlorophyll content.

Number of grains per cob. The number of grains 
per cob showed a significant effect on nitrogen fer-
tilisation (Table 1). The maximum number of grains 
per cob (476.61) was counted from N1, and the min-
imum number of grains per cob (440.15) was count-
ed from N3. The number of grains per cob was also 
significant due to  irrigation frequencies (Table  1). 
Therefore, the maximum number of  grains per 
cob (482.20) was with I1 and the minimum num-
ber of grains per cob (435.48) was counted from I3. 
The interaction effect of nitrogen fertiliser applica-
tion and irrigation frequencies differ significantly 
in the number of grains per cob (Table 1). N1 with I1 
had the highest number of grains per cob (501.16), 
while N3 with I3 had the lowest number of  grains 
per cob (430.11 %). Our findings are consistent with 

Table 1. Effect of different nitrogen fertiliser application rates, irrigation frequencies and interaction on yield com-
ponents and yield of maize

Nitrogen 
fertilizer AR

Chlorophyll content (DAS) No.  
grains cob–1

1 000 gw 
(g) 

Grain yield 
(g pot-1)

Stover yield 
(g·pot–1)

BY 
(g·pot–1)21 42

N1 76.06a 78.83a 476.61a 320.5 219.89a 263.56a 483.45a 

N2 71.16b 74.06a 454.61ab 314.41 198.19ab 249.40a 447.59ab 
N3 59.57c 67.95b 440.15b 304.02 184.38b 227.23b 411.60b 
Irrigation frequencies 
I1 73.87a 77.08a 482.20a 320.21 211.27a 249.63 460.89
I2 71.77a 75.12a 453.68ab 309.5 204.6ab 243.94 448.54
I3 61.15b 67.95b 435.48b 309.21 186.6b 246.61 433.21
Interaction effect
N1I1 78.63a 80.50a 501.16a 326.55 227.62 269.99a 497.61a 

N1I2 75.60ab 79.77ab 477.68ab 317.4 225.75 256.27ab 482.02ab 
N1I3 73.93abc 76.23abc 441.99bc 317.55 206.31 264.41abc 470.72ab 

N2I1 74.67abc 76.07abc 482.3abc 321.92 211.64 254.01abc 465.65ab 

N2I2 72.40abcd 75.50abc 447.98bc 309.76 197.46 244.98abc 442.44ab 

N2I3 66.40cd 70.60bc 433.55bc 311.56 185.48 249.88abc 434.68ab 

N3I1 68.300bcd 74.67abc 454.16bc 312.16 194.54 224.88c 419.42ab 
N3I2 67.30cd 70.10c 435.39bc 301.36 190.59 230.58c 421.17ab 

N3I3 43.11e 57.00d 430.89c 298.52 168 226.22bc 394.22c 

CV% 5.97 6.61 7.14 16.45 7.38 10.55 7.57

a–dMean values in a column having the same letters or without letter do not differ significantly at 0.05 level of probability; 
CV –  Co-efficient of variation; AR – aplication rate; BY – biological yield; gw – grain weight; N1 (100 % of conventional 
nitrogen rate – 550 kg·ha–1/standard rate); N2(75 % of conventional nitrogen rate – 412.5 kg·ha–1/medium rate); N3 – (50 
% of conventional nitrogen rate – 275 kg·ha–1/low rate); I1 – (irrigation based on 100% of pan evaporation/standard); I2 
– (irrigation based on 75% of pan evaporation/medium); I3 – (irrigation based on 50% of pan evaporation/low)
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the report by Iqbal et al. (2014), who found that in-
creased nitrogen fertilisation significantly impact-
ed the number of  grains per cob. Similarly, Shen 
et al.  (2020) observed a significant effect of  irriga-
tion frequency on grain count. 

1  000 grain weight. 1 000 grain weight did not 
vary significantly in  terms of  nitrogen fertiliser 
application rates or  irrigation frequencies (Ta-
ble  1). The highest 1  000-grain weight (320.50  g) 
was found from N1, and the lowest (304.02 g) was 
found from  N3. Among the irrigation frequencies, 
the maximum grain weight (320.21  g) was ob-
tained from the I1 minimum value (309.21) from I3. 
The combination of  N1 and I1 yielded the highest 
weight  of  1000  grains (326.55  g), while the com-
bination of  N3 and I3 yielded the lowest weight 
of 1 000 grains (298.52 g) (Table 1). No remarkable 
variation in 100-grain weight following both nitro-
gen fertilisation and irrigation has also been report-
ed by Jahangirlou et al. 2020. 

Grain yield. The grain yield exhibited notable 
variations corresponding to  different nitrogen fer-
tiliser application rates (Table 1). The highest grain 
yield (219.89  g·pot–1) was achieved with the ap-
plication of  N1 (100% nitrogen fertiliser), whereas 
the lowest grain yield (184.38 gpot-1) was observed 
with N3 (50% Nitrogen fertiliser). Furthermore, the 
irrigation frequency demonstrated significant ef-
fects on grain yield (Table 1), with the highest yield 
(211.27 g·pot–1) associated with I1 and the lowest 
yield (186.6 g·pot–1) observed with I3.

A  noteworthy observation emerged from 
the  combined application of  nitrogen fertilizer 
and irrigation frequency (Table  1). The highest 
grain yield of 227.62 g·pot–1 was attained with the 
combination of  N1 and I1, while the lowest grain 
yield of 168 g·pot–1 was recorded with the combina-
tion of N3 and I3.

Several previous findings in maize have support-
ed variations in  grain yield concerning different 
nitrogen fertiliser application rates and irrigation 
(Davies et al. 2020; Li et al. 2020; Ren et al. 2022). 
These studies also emphasize the optimisation 
of  resource allocation to  enhance crop productiv-
ity (Shah and Wu 2019). Furthermore, these results 
can be elucidated and leveraged through the inte-
gration of  a  FLCS in  agricultural decision-making 
processes, as  described by  Seyedmohammadi and 
Navidi (2022).

The fuzzy logic control system offers a  sophisti-
cated approach to  managing the uncertainties in-

herent in  agricultural systems, such as  variations 
in  soil conditions, weather patterns, and crop re-
sponses to  inputs. By  incorporating fuzzy logic 
principles into decision-making frameworks, the 
FLCS can effectively analyse and interpret the in-
tricate relationships between nitrogen fertilizer ap-
plication, irrigation frequency, and grain yield (Pra-
bakaran et al. 2018). 

The ultimate measure of  the success of  any ag-
ricultural intervention is  its impact on  crop yield. 
In this study, implementing the fuzzy expert system, 
RGB colour code analysis, and customised irriga-
tion schedule has demonstrated a positive correla-
tion with maize yield. By tailoring nitrogen fertilisa-
tion based on site-specific requirements, the fuzzy 
expert system has likely contributed to a more bal-
anced nutrient supply, positively influencing crop 
development and yield (Prabakaran et al. 2021). The 
visual insights provided by RGB colour code analy-
sis have allowed farmers to adjust their management 
practices promptly, optimising the conditions for 
maximum yield potential. Furthermore, incorporat-
ing a  customised irrigation schedule complements 
the precision agriculture framework. Efficient water 
management ensures crops receive adequate mois-
ture at critical growth stages, preventing water stress 
and optimising yield potential (Farooq et al. 2019). 
The synergy between nitrogen fertilisation and irri-
gation practices within the fuzzy expert system has 
likely created a  conducive environment for maxi-
mising maize production in Bangladesh.

Stover yield. Stover yield did not vary signifi-
cantly due to different irrigation methods; however, 
it  caused remarkable variation in  nitrogen fertili-
sation (Table  1). Results revealed that the highest 
stover yield (263.56 g·pot–1) was obtained from N1, 
and the lowest stover yield (227.23  g·pot–1) was 
obtained from N3. Considering the irrigation fre-
quencies, the highest stover yield (249.63  g·pot–1) 
was recorded for I1, and the lowest Stover yield 
(246.61 g·pot–1) was recorded for I3. The interaction 
effect between nitrogen fertilizer application rates 
and irrigation frequencies on stover yield was sig-
nificant, and maximum stover yield (269.99 g·pot–1) 
was produced from the combination of N1 with I1, 
and minimum Stover yield (224.88 g·pot–1) was pro-
duced in the combination of N3 with I1(Table 1).

Biological yield. Results revealed that the highest 
biological yield (483 g·pot–1) was produced for N1, 
and the lowest biological yield (411.60 g·pot–1) was 
obtained for N3. Biological yield showed an  insig-
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nificant response to irrigation frequencies (Table 1). 
The maximum biological yield (460.89  g·pot–1) 
was obtained from I1, and the minimum value 
(433.21 g·pot–1) was obtained from I3. The interac-
tion between N1 and I1 produced the highest bio-
logical yield (497. 61 g·pot–1). However, the lowest 
biological yield (394.22  g·pot–1) was obtained for 
the interaction between N3 and I3 (Table 1).

Greater stover yield and biological yield of maize 
in response to nitrogen may be due to the fact that 
nitrogen plays an  important role in  plant growth 
and development. Ren et al. (2022) reported that ni-
trogen helps to promote more biomass by support-
ing chlorophyll production in  leaves. In  contrast, 
the small difference in  stover yield and biological 
yield for greater irrigation frequencies may sug-
gest that maize plants might exhibit a threshold be-
yond which surplus water negatively impacts crop 
growth. Kaur et al. (2020) reported that available wa-
ter is essential for optimum plant growth and nutri-
ent uptake. However, over-irrigation results in water 
logging and reduced oxygen supply to the root zone, 
followed by leaching of nutrients. Consequently, the 
influence of irrigation frequency on stover yield may 
not have as high an  impact as nitrogen rates since 
water availability has a  dual role in  nutrient and 
plant physiological process interactions.

Fuzzy expert system (FES) – based decision 
systems. This section elucidates the findings re-
garding the performance and effectiveness of  the 
fuzzy rule-based decision systems implemented 
in  the experiment. It discusses the system's ability 
to  interpret input data, generate appropriate deci-
sions, and its overall impact on  optimising plant 
management practices.

Data analysis and simulation with Matlab fuzzy 
toolbox. In  this part, crisp values from the agro-
nomic field research have been applied to the fuzzy 
logic control system. In  the thesis paper, nitrogen 
fertilization and irrigation schedule were measured 
with leaf chlorophyll content based on RGB colour 
code, and evaporation pan reading was described 
in  the fuzzy logic system among all parameters. 
Chlorophyll (Chl) is an  important photosynthetic 
pigment for plants, largely determining photosyn-
thetic capacity and plant growth (Li et al. 2018). 

We use Matlab's fuzzy toolbox to implement our 
algorithm. Figure 6 depicts a fuzzy inference system 
with two Matlab inputs (ChNRGB value for nitrogen 
fertilisation and pan evaporation level for irrigation 
frequencies) and two outputs (nitrogen fertilisation 
& irrigation frequencies). 

Membership functions were created using Mat-
lab's FIS Editor and membership function editor. 

Figure 6. The fuzzy inference system consists of two inputs (ChNRGB value for N fertilisation and pan evaporation 
level for irrigation frequencies) and two outputs (nitrogen fertiliser and irrigation frequencies)

Chlorophyll content Nitrogen fertilization

Irrigation schedulingEvaporation pan level

Untitled

(mamdani)
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To  obtain the membership function of  the output 
category, the range of the output variable was first 
set to 100. The parameters for each category were 
then configured (Othman et al. 2014). A triangular 
membership function was used in this study.

Fuzzy set of  the input variable. Fuzzy-based 
modelling variables were developed to schedule ir-
rigation frequencies for nitrogen fertilisation and 
pan evaporation levels. For both variables, three 
fuzzy sets were defined: low, medium, and standard, 
with numerical values derived from experimental 
analysis (Table 1, and Figure 7).

Fuzzy set of  the output variable. Generalizing 
the methodology of the FRBS output variables, three 
fuzzy sets were defined for both nitrogen fertiliser 
rates and irrigation frequency: low, moderate, and 
standard (Figure 8). Furthermore, fuzzy triangular 
sets were used to reduce complexity because they are 
widely used and require only the peak value and the 
width of its base to be determined. (Viais et al. 2019)

Fuzzy rules base. We  considered the 9 (3  ×  3) 
combinations among the fuzzy sets of the two in-
put variables to obtain the rules base. Thus was cre-
ated 9 pairs of the form nitrogen fertiliser rate × ir-
rigation frequencies according to  methodology 
(Khoshnevisan et al. 2014). The rules were created 
after the input and output membership functions 
were developed. In total, 15 rules statements were 
created in  step 4 to  classify maize N  fertilization 
and irrigation (Figure S1 in Electronic supplemen-
tary material – ESM). The rule viewer also consists 
of  the defuzzification results (Figure S2 in ESM). 
The first and second columns represent leaf chlo-
rophyll content and evaporation rate values, while 
the third and fourth columns represent the Nitro-
gen rates and irrigation frequencies for maize cul-
tivation. Finally, the last two columns, the category 
column, show the defuzzification results. 

Surface view. The surface rule viewer of the fuzzy 
inference system in Matlab produces a 3D surface 

Figure 7. Triangular membership function of input fuzzy set

Figure 8. Triangular membership function of the fuzzy output set

https://rae.agriculturejournals.cz/attachments/000642.pdf
https://rae.agriculturejournals.cz/attachments/000642.pdf
https://rae.agriculturejournals.cz/attachments/000642.pdf
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plot to  visualise the relationships among chloro-
phyll content, N  fertilizer application rates, and 
evaporation levels (Figure S3 in ESM).

The agronomic experiment method is  used 
to  compute the pertinence functions of  the fuzzy 
sets of  this study's outcome variables (Daniel 
et al. 2019). Figures 7 and 8 show that it was pos-
sible to  determine the intervals indicating the 
most significant degree of pertinence of each item 
of  the  input and output variables of a given fuzzy 
set. Suppose an experiment was carried out under 
the same conditions during the same period de-
scribed. In  that case, the classifications presented 
in (Table 2) are possibly invariant or have no signif-
icant changes, making the result relevant. We have 
the following values (Table 2.) measured for some 
combinations of  input fuzzy sets for leaf chloro-
phyll content and yield output variable (for other 
output variables and combinations of  fuzzy input 
sets, the procedure performed was analogous). 

Setting up the rules for the fuzzy system (Table 2) 
shows how the fuzzy sets of inputs relate to the out-
put variables and how the median values for each 
combination of fuzzy input sets are determined. 

CONCLUSION

The evaluation of fuzzy expert systems combined 
with RGB colour code analysis and a  customised 
irrigation schedule has shown significant prom-
ise in  transforming precision maize production 
in Bangladesh. This integration merges traditional 
agricultural wisdom with advanced technologies, 
offering a  more adaptive and efficient method 
to  enhance crop yield and ensure sustainable re-
source management. Fuzzy expert systems refine 
decision-making in nitrogen fertilisation, allowing 
optimal nitrogen use and reducing environmental 
and economic impacts. RGB colour code analysis 
provides visual insights into maize health, enabling 
real-time decisions tailored to  each field's condi-
tions. This research developed the need-based op-

timum dose of nitrogen fertilisation and irrigation 
at the proper time for maize growth and yield with 
the fuzzy expert system. This holistic approach 
combines traditional knowledge with technology, 
addressing food security, economic sustainability, 
and environmental resilience in maize production.
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