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Abstract: The research was conducted at the Department of Agronomy and Agricultural Extension, Rajshahi Universi-
ty, from December 2021 to April 2022. The objective was to develop a fuzzy expert system for site-specific N fertilisation
using leaf colour code (RGB) and irrigation frequencies for maize yield. The experiment encompassed two primary
factors: nitrogen fertiliser application rates (N;: 100%, N,: 75%, N5: 50% of conventional rates) and irrigation frequencies
(1;: 100%, I,: 75%, I5: 50% of pan evaporation). A completely randomized design (CRD) with three replications was used
to arrange the experimental pots, each receiving recommended doses of phosphorus, potassium, and sulfur, with urea
applied per treatment instructions. Results revealed significant chlorophyll content and grain yield differences among
the various nitrogen fertiliser rates. The highest grain yield (219.27 g-pot™) was observed with N, whereas the lowest
(186.6 g-pot™') was with N;. Similarly, irrigation frequencies significantly influenced chlorophyll content and cob cha-
racteristics, with I, resulting in the highest grain yield (211.27 g-pot™) and I, the lowest (184.6 g-pot™"). Furthermore,
the interaction between fertiliser application rates and irrigation frequencies had notable effects on various parameters,
leading to the highest grain yield of 227.62 g-pot™! with the combination of N and I, and the lowest (168.00 g-pot™)
with N, I;. The agricultural experiments were facilitated using the Matlab fuzzy toolbox, employing the Mamdani in-
ference method. Fuzzy rules were delineated for nitrogen application rates and irrigation frequencies, with three fuzzy
sets each. Membership functions were developed utilising Matlab's fuzzy interface system (FIS) editor and membership
function editor, optimising leaf chlorophyll content, evaporation rate as input tiger N fertilisation, and irrigation fre-
quencies as output for precise maize production in Bangladesh.
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In the realm of agricultural innovation, precision
farming techniques have become increasingly im-
perative for enhancing crop productivity and sus-
tainability, particularly in regions like Bangladesh,
where agricultural resources are finite and the pop-
ulation's reliance on staple crops such as maize
is significant (Hossain et al. 2021). Within this con-
text, the integration of advanced technologies such
as fuzzy expert systems (FES) holds immense prom-
ise for optimising agronomic practices, particularly
in the realm of nitrogen (N) fertilisation, a criti-
cal determinant of maize yield and quality (Mana
et al. 2024).

This manuscript delves into the pioneering re-
search conducted in Bangladesh, focusing on de-
veloping and applying a novel fuzzy expert system
tailored for site-specific N fertilization in maize
cultivation. Unlike traditional approaches that rely
solely on conventional agronomic practices, this sys-
tem incorporates innovative elements such as RGB
(red-green-blue) colour codes and precise irrigation
schedules to fine-tune N application rates, thereby
maximising crop yield while minimising environ-
mental impact (Dahal et al. 2020).

Nutrient management, an essential component
of precision agronomy, entails the precise applica-
tion of fertilizers tailored to the specific require-
ments of crops. Farmers can customize nutrient
applications by comprehending the intricate in-
teractions among soil health, plant needs, and en-
vironmental factors, thereby averting overuse and
reducing nutrient runoff. This practice amplifies
crop vields and fosters environmental preservation
by curbing soil degradation and water pollution
(Rahman et al. 2022).

A crucial facet of this optimisation process revolves
around the discerning application of fertilizers, with
nitrogen playing a pivotal role in the growth and de-
velopment of crops such as maize. Conventional ni-
trogen fertilisation methods often lack the precision
necessary for optimal crop health, thus prompting
the exploration of innovative approaches (Giorda-
no et al. 2021). This study delves into the evolution
of a fuzzy expert system devised to streamline de-
cision-making in site-specific nitrogen fertilisation
for maize cultivation within the realm of precision
agriculture in Bangladesh, with RGB color codes
serving as a primary input (Figure 1).

Bangladesh, characterised by diverse agroeco-
logical zones and varying soil conditions, poses
a distinct set of challenges for farmers striving
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Figure 1. Use of RGB colour code to determine foliar
greenness

to refine nitrogen application strategies (Jahan
et al. 2018). Incorporating RGB colour codes de-
rived from on-site images of maize plants furnish-
es a dynamic and visually comprehensive dataset
for analysis (Figure 1). These codes capture subtle
variations in plant health and vigour, offering a non-
invasive and real-time approach to assessing the ni-
trogen needs of maize crops.

Traditionally, plant nutrient assessments have re-
lied on labour-intensive and time-consuming meth-
ods, often resulting in delayed insights into nutrient
deficiencies (Henry 2020). However, the integration
of RGB colour information presents a promising al-
ternative, leveraging the visual cues inherent in plant
foliage. Derived from on-site images, RGB colour
codes serve as a rich data source that can be anal-
ysed to infer nutrient status (Barbedo 2019).

In precision agriculture, optimising water manage-
ment is crucial for enhancing crop productivity and
resource efficiency, particularly amid rising global
populations and unpredictable climate patterns
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(Rastogi et al. 2024). Evaporation pan readings serve
as reliable indicators of atmospheric water demand
and, consequently, the potential water requirements
of crops (Krishna 2019). By incorporating these read-
ings into irrigation scheduling, real-time adjustments
can be made to ensure crops receive optimal water
tailored to their growth stages and environmental
conditions. Moreover, the strategic application of ni-
trogen fertiliser complements this approach, given
nitrogen's pivotal role in plant growth and water-use
efficiency (Wang et al. 2017). Synchronising nitro-
gen application with the irrigation schedule based
on evaporation pan readings thus presents a holistic
strategy to enhance crop health, nutrient absorption,
and overall agricultural sustainability.

In addressing the inherent uncertainty and im-
precision in agricultural data, fuzzy expert sys-
tems emerge as powerful tools (Janssen et al. 2010).
By applying fuzzy logic principles within an ex-
pert system framework, these systems can better
handle the vagueness inherent in colour-based as-
sessments, providing a more nuanced and accurate
representation of nutrient conditions. Fuzzy logic
(FL) is a precise problem-solving technique that
handles numerical data and linguistic knowledge
simultaneously. It offers a method for controlling
complex systems without requiring precise math-
ematical descriptions, resembling human reasoning
in its ability to handle uncertainties, vagueness, and
judgments. Originating from the work of Profes-
sor Dr. Lotfi Zadeh at the University of California,
Berkeley, in 1965 (Zadeh 1965), fuzzy logic inte-
grates intermediate possibilities between digital
values, departing from the binary logic foundation
of modern computers (Figure 2).

In line with the preceding discussion, the advance-
ment described involves a multifaceted approach
encompassing the design of a fuzzy logic system, its
integration into an expert system architecture, rule-
based development, and the incorporation of do-
main expertise. A feedback mechanism within the
system facilitates its adaptability and learning over
time, ensuring continual enhancement and rele-

Boolean logic
Fuzzy logic

Figure 2. The main difference between fuzzy logic and
Boolean logic
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vance in the dynamic agricultural landscape (Arad-
jo et al. 2021). The overarching objective of this pro-
gression is to craft a robust and user-friendly tool
empowering farmers and agronomists to make in-
formed decisions regarding nutrient management.
By leveraging the capabilities of fuzzy expert sys-
tems alongside RGB colour codes, this innovative
approach holds the potential to revolutionise on-
site nutrient assessments, fostering more efficient
and precise agricultural practices conducive to sus-
tainable crop production (Fawzy et al. 2022).

The evaluation of the fuzzy expert system entails
an exhaustive exploration of fuzzy logic principles
and their integration into the expert system archi-
tecture. Drawing on domain-specific knowledge
from agronomists and farmers, the system estab-
lishes a resilient rule base linking RGB colour codes
to site-specific nitrogen fertilisation recommenda-
tions (Tan et al. 2022).

The system's adaptive nature, facilitated by a feed-
back mechanism, ensures ongoing learning and re-
finement of recommendations based on real-world
performance. The implications of this evolutionary
journey extend beyond mere technological innova-
tion; they underscore the potential to revolutionise
decision-making processes for farmers, enabling
them to achieve both economic and environmen-
tal sustainability in their agricultural practices.
As we explore the fuzzy expert system's evaluation,
we aspire to contribute to the ongoing dialogue
on precision agriculture, offering a practical solution
tailored to the unique challenges of nitrogen fertili-
sation in maize cultivation in Bangladesh.

This research investigates strategies to facilitate the
efficient transfer and adoption of fuzzy expert sys-
tems for fertiliser application and optimal irrigation
management for maize production in Bangladesh.

MATERIAL AND METHODS

Plant materials and growth condition. The re-
search was carried out within a controlled environ-
ment in a net house of the Agronomy Field Labo-
ratory, Department of Agronomy and Agricultural
Extension, Rajshahi University, Rajshahi, during the
December 2021 till April 2022, utilising loamy sand
soil obtained from the nearby experimental field.
The soil composition contained (gm-kg™') 0.4 or-
ganic carbon, 0.7 nitrogen, 1.8 ppm K, 7.5% Ca, and
negligible phosphorus. The soil exhibited a slightly
alkaline pH level of 7.6 and an electrical conductivity
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of 0.04 milliSiemens (mS) per cm (mS-cm™). Plastic
pots, measuring 30 cm in height and 25 cm in diam-
eter, were filled with 15 kg of air-dried, free-draining
soil for the experiment.

Hybrid maize variety NH-7720, marketed by Syn-
genta Bangladesh Ltd., was used. The experiment
encompassed three nitrogen fertiliser application
rates (N;: 100%, N,: 75%, N3: 50% of conventional
rates) and three irrigation frequencies (;: 100%,
1,: 75%, I3: 50% of pan evaporation). A completely
randomized design (CRD) with three replications
was utilised to arrange the experimental pots. Each
pot received recommended doses of phosphorus,
potassium, sulfur, and organic fertiliser, while urea
and irrigation were applied as per treatment in-
structions.

The collected data were analysed statistically
following the analysis of variance (ANOVA) tech-
nique, and the mean differences were adjudged us-
ing Duncan's Multiple Range Test (DMRT), using
SPSS statistical software (version 22.0).

Determination of leaf chlorophyll content. The
nitrogen content of maize leaves was determined
using digital image analysis based on the numeric
values of RGB colours. The analysis was conduct-
ed using RGB colour picker software (version 1.0)
on scanned images of the maize leaves (Figure 3). The

(A)

(B) Colour picker from image

Figure 3. (A) Scanned image of the maize leaf, (B) mea-
surement of the composition of red, blue and green
colours using RGB color picker software
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following formula, as described by Ali et al. (2013),
was used for the determination of nitrogen content:

R B
ChN, oz, =G———— 1
RGB 2 2 ( )
where: ChNyg; — the chlorophyll content; G — green; R —
red; B — blue

Irrigation measurement with evaporation pan.
Irrigation water requirement was calculated based
on cumulative pan evaporation (CPE). The daily
pan evaporation was measured from an evapora-
tion pan and rainfall was measured using a standard
rain gauge (Figure. 4) Pan evaporation was adjusted
by using the following equation (Michael 1985):

CPE=EV,x K, 2)
where: EV), — pan evaporation; K, — pan co-efficient (0.7.)

Collection of experimental data. Plant physi-
ological parameters: Leaf chlorophyll content, yield
components and yield: Number of grains cob™,
1 000 grain weight (g), grain yield (t-ha™'), stover
yield (tha™!) and Biological yield (t-ha™') were re-
corded.

Computerised experimental setup. The fuzzy
logic toolbox within Matlab was utilised to define
the membership functions and construct the fuzzy
rule-based system. Several sequential steps were
undertaken to compute the output of this fuzzy in-
ference system (FIS). Initially, a set of fuzzy rules
was determined. Subsequently, the input data
was fuzzified using the input membership func-
tions. Following this, the rule strength was calcu-
lated by aggregating the fuzzified inputs according
to the fuzzy rules. Then, the consequence of each
rule was determined by combining the rule strength
with the output membership functions. Finally, the
output distribution was obtained by aggregating all
the consequences.

Fuzzy logic control system. Figure 5 illus-
trates the structure of a fuzzy logic control sys-
tem. The development of fuzzy rule-based systems

Water level

50 cm
100 cm

Figure 4. Schematic diagram of the evaporative pan
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Rules

Crisp input Fuzzifier

Fuzzy input set

Figure 5. Fuzzy Logic controller block diagram

(FRBS) comprises four main components: An input
processor (or fuzzification), a set of linguistic rules,
a method of fuzzy inference, and an output pro-
cessor (or defuzzification) that generates an actual
number as output.

Membership function. A fuzzy set membership
function serves as a generalisation of the indicator
function for classical sets. It represents the degree
of truth as an extension of valuation in fuzzy logic.
The membership function applies across the do-
main of all possible values (Zadeh 1965).

Input and fuzzification. The input invariably
consists of a crisp numerical value confined to the
input variable's discourse universe. Fuzzification in-
volves allocating the crisp input into the appropri-
ate fuzzy set.

Output and defuzzification. The outcome mani-
fests as fuzziness in the degree of membership
in the qualifying linguistic set. The process of con-
verting a fuzzy quantity into a crisp value is termed
the defuzzification of a fuzzy set. The controller's
output undergoes defuzzification to be presented
in crisp form.

RESULTS AND DISCUSSION

Plant response to experimental treatments.
This section presents the outcomes of the experi-
mental treatments administered to the plants, fo-
cusing on their responses and performance under
various conditions. It encompasses observations
related to growth parameters, yield, and any other
relevant plant metrics.

Chlorophyll content (ChNggg). The chlorophyll
content (ChNygp) in maize leaves was evaluated
at 21 and 42 days after sowing (DAS), considering
varying nitrogen fertiliser rates and irrigation fre-
quencies. For N;, the maximum chlorophyll con-
tents were recorded at 76.6 DAS and 78.83 at 21
and 42 DAS, while the corresponding minimum
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Defuzzifier Crisp output

Fuzzy output set

values were 59.57 and 67.95 for Nj. Regarding ir-
rigation frequency, I; exhibited the highest levels
at 73.87 and 77.08, contrasting with I;, which yield-
ed the lowest at 62.15 and 67.95. The interaction
between N; and I; displayed the highest content
at 78.63 and 80.5, respectively, while N; and I; ex-
hibited the lowest at 43.11 and 57.

The observed differences in chlorophyll content
across different nitrogen fertiliser rates highlight the
significant impact of nitrogen availability on plant
photosynthetic activity. Our results are consistent
with the findings of Urban et al. (2021) and Mu-
hammad et al. (2022), who also reported that higher
chlorophyll content at higher nitrogen application
rates compared to lower rates suggests that ad-
equate nitrogen application promotes chlorophyll
synthesis and accumulation in maize leaves, thereby
enhancing photosynthetic efficiency and potentially
leading to increased biomass production and yield.
Similarly, the variations in chlorophyll content as-
sociated with different irrigation frequencies under-
score the importance of water management in in-
fluencing plant physiological processes. Our results
align with the findings of Chen et al. (2023) and Lan
et al. (2024), who demonstrated that higher chloro-
phyll levels observed under more frequent irriga-
tion compared to less frequent irrigation indicate
that adequate water availability positively influences
chlorophyll synthesis and retention in maize leaves,
thus supporting optimal photosynthetic activity and
plant growth. Furthermore, the interaction between
nitrogen fertiliser rates and irrigation frequencies
reveals synergistic effects on chlorophyll content.
This finding is consistent with the number of previ-
ous results (Nasar et al. 2020; Candiani et al. 2022;
Ye et al. 2022), emphasising the combined effects
of nutrient and water management on chlorophyll
content in plants. The highest chlorophyll levels
observed under the combination of N, and I, sug-
gest that optimal nitrogen availability and sufficient
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water supply promote maximal chlorophyll accu-
mulation in maize leaves. Conversely, the lowest
chlorophyll content observed under the combina-
tion of N; and I; indicates that inadequate nitrogen
supply and limited water availability negatively im-
pact chlorophyll synthesis and retention, potentially
compromising plant photosynthetic capacity and
overall growth performance.

Incorporating fuzzy expert systems in decision-
making for site-specific nitrogen fertilisation, guided
by RGB colour code analysis, has positively affected
chlorophyll content in maize crops. Chlorophyll
serves as a vital indicator of plant health and pho-
tosynthetic activity, which is crucial for overall crop
performance. The nuanced and adaptable approach
facilitated by fuzzy logic has played a pivotal role
in optimising nitrogen application, leading to en-
hanced chlorophyll synthesis. Real-time feedback
from RGB colour code analysis has enabled more
precise assessments of chlorophyll levels, ensur-

https://doi.org/10.17221/35/2024-RAE

ing nitrogen is applied following the specific needs
of each plot (Zermas et al. 2020). This targeted ap-
proach has likely bolstered photosynthetic efficien-
cy, consequently improving chlorophyll content.
Number of grains per cob. The number of grains
per cob showed a significant effect on nitrogen fer-
tilisation (Table 1). The maximum number of grains
per cob (476.61) was counted from N, and the min-
imum number of grains per cob (440.15) was count-
ed from N;. The number of grains per cob was also
significant due to irrigation frequencies (Table 1).
Therefore, the maximum number of grains per
cob (482.20) was with I; and the minimum num-
ber of grains per cob (435.48) was counted from I,
The interaction effect of nitrogen fertiliser applica-
tion and irrigation frequencies differ significantly
in the number of grains per cob (Table 1). N; with [
had the highest number of grains per cob (501.16),
while N; with I; had the lowest number of grains
per cob (430.11 %). Our findings are consistent with

Table 1. Effect of different nitrogen fertiliser application rates, irrigation frequencies and interaction on yield com-

ponents and yield of maize

Nitrogen Chlorophyll content (DAS) No. 1000 gw Grain yield  Stover yield BY
fertilizer AR 21 42 grains cob™! (g) (g pot™) (g-pot™) (g-pot™)
N, 76.06° 78.83* 476.61° 320.5 219.89° 263.56° 483.45°
N, 71.16° 74.06* 454.61% 314.41 198.19% 249.40° 447.59%
N, 59.57¢ 67.95° 440.15° 304.02 184.38° 227.23° 411.60°
Irrigation frequencies

I 73.87° 77.08* 482.20° 320.21 211.27° 249.63 460.89
I, 71.77° 75.12° 453.68% 309.5 204.6% 243.94 448.54
I 61.15° 67.95° 435.48° 309.21 186.6" 246.61 433.21
Interaction effect

N 78.63° 80.50° 501.16* 326.55 227.62 269.99° 497.61°
N, 75.60% 79.77% 477.68% 317.4 225.75 256.27% 482.02%
N, 73.93b¢ 76.23%¢ 441.99> 317.55 206.31 264.41%b¢ 470.72%
NI, 74.67%¢ 76.07°>¢ 482.3%¢ 321.92 211.64 254.01%b¢ 465.65%
N,I, 72.40%>< 75.50%¢ 447.98° 309.76 197.46 244.98%b¢ 442.44%
NI, 66.40 70.60° 433.55 311.56 185.48 249.88%b¢ 434.68%
NI, 68.300P 74.67%¢ 454.16> 312.16 194.54 224.88¢ 419.42%
NI, 67.30% 70.10° 435.39b¢ 301.36 190.59 230.58¢ 421.17%
NI, 43.11° 57.00¢ 430.89° 298.52 168 226.22b¢ 394.22¢
CV% 5.97 6.61 7.14 16.45 7.38 10.55 7.57

3-dMean values in a column having the same letters or without letter do not differ significantly at 0.05 level of probability;

CV — Co-efficient of variation; AR — aplication rate; BY — biological yield; gw — grain weight; N, (100 % of conventional

nitrogen rate — 550 kg-ha™!/standard rate); N,(75 % of conventional nitrogen rate — 412.5 kg-ha™!/medium rate); N; — (50

% of conventional nitrogen rate — 275 kg-ha™!/low rate); I; — (irrigation based on 100% of pan evaporation/standard); I,

— (irrigation based on 75% of pan evaporation/medium); I; — (irrigation based on 50% of pan evaporation/low)
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the report by Igbal et al. (2014), who found that in-
creased nitrogen fertilisation significantly impact-
ed the number of grains per cob. Similarly, Shen
et al. (2020) observed a significant effect of irriga-
tion frequency on grain count.

1 000 grain weight. 1 000 grain weight did not
vary significantly in terms of nitrogen fertiliser
application rates or irrigation frequencies (Ta-
ble 1). The highest 1 000-grain weight (320.50 g)
was found from N;, and the lowest (304.02 g) was
found from N; Among the irrigation frequencies,
the maximum grain weight (320.21 g) was ob-
tained from the /; minimum value (309.21) from I,
The combination of N; and I; yielded the highest
weight of 1000 grains (326.55 g), while the com-
bination of N; and I; yielded the lowest weight
of 1 000 grains (298.52 g) (Table 1). No remarkable
variation in 100-grain weight following both nitro-
gen fertilisation and irrigation has also been report-
ed by Jahangirlou et al. 2020.

Grain yield. The grain yield exhibited notable
variations corresponding to different nitrogen fer-
tiliser application rates (Table 1). The highest grain
yield (219.89 g-pot™!) was achieved with the ap-
plication of N; (100% nitrogen fertiliser), whereas
the lowest grain yield (184.38 gpot ') was observed
with Nj (50% Nitrogen fertiliser). Furthermore, the
irrigation frequency demonstrated significant ef-
fects on grain yield (Table 1), with the highest yield
(211.27 gpot™!) associated with I, and the lowest
yield (186.6 g-pot™') observed with ;.

A noteworthy observation emerged from
the combined application of nitrogen fertilizer
and irrigation frequency (Table 1). The highest
grain yield of 227.62 g-pot™ was attained with the
combination of N; and I;, while the lowest grain
yield of 168 g-pot™ was recorded with the combina-
tion of N and I,.

Several previous findings in maize have support-
ed variations in grain yield concerning different
nitrogen fertiliser application rates and irrigation
(Davies et al. 2020; Li et al. 2020; Ren et al. 2022).
These studies also emphasize the optimisation
of resource allocation to enhance crop productiv-
ity (Shah and Wu 2019). Furthermore, these results
can be elucidated and leveraged through the inte-
gration of a FLCS in agricultural decision-making
processes, as described by Seyedmohammadi and
Navidi (2022).

The fuzzy logic control system offers a sophisti-
cated approach to managing the uncertainties in-
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herent in agricultural systems, such as variations
in soil conditions, weather patterns, and crop re-
sponses to inputs. By incorporating fuzzy logic
principles into decision-making frameworks, the
FLCS can effectively analyse and interpret the in-
tricate relationships between nitrogen fertilizer ap-
plication, irrigation frequency, and grain yield (Pra-
bakaran et al. 2018).

The ultimate measure of the success of any ag-
ricultural intervention is its impact on crop yield.
In this study, implementing the fuzzy expert system,
RGB colour code analysis, and customised irriga-
tion schedule has demonstrated a positive correla-
tion with maize yield. By tailoring nitrogen fertilisa-
tion based on site-specific requirements, the fuzzy
expert system has likely contributed to a more bal-
anced nutrient supply, positively influencing crop
development and yield (Prabakaran et al. 2021). The
visual insights provided by RGB colour code analy-
sis have allowed farmers to adjust their management
practices promptly, optimising the conditions for
maximum yield potential. Furthermore, incorporat-
ing a customised irrigation schedule complements
the precision agriculture framework. Efficient water
management ensures crops receive adequate mois-
ture at critical growth stages, preventing water stress
and optimising yield potential (Farooq et al. 2019).
The synergy between nitrogen fertilisation and irri-
gation practices within the fuzzy expert system has
likely created a conducive environment for maxi-
mising maize production in Bangladesh.

Stover yield. Stover yield did not vary signifi-
cantly due to different irrigation methods; however,
it caused remarkable variation in nitrogen fertili-
sation (Table 1). Results revealed that the highest
stover yield (263.56 g-pot™') was obtained from N,
and the lowest stover yield (227.23 g-pot™') was
obtained from N; Considering the irrigation fre-
quencies, the highest stover yield (249.63 g-pot™)
was recorded for I; and the lowest Stover yield
(246.61 g-pot™') was recorded for I, The interaction
effect between nitrogen fertilizer application rates
and irrigation frequencies on stover yield was sig-
nificant, and maximum stover yield (269.99 g-pot™)
was produced from the combination of N; with I,
and minimum Stover yield (224.88 g-pot™!) was pro-
duced in the combination of N; with I;(Table 1).

Biological yield. Results revealed that the highest
biological yield (483 g-pot™') was produced for N;
and the lowest biological yield (411.60 g-pot™') was
obtained for Nj;. Biological yield showed an insig-
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nificant response to irrigation frequencies (Table 1).
The maximum biological yield (460.89 g-pot™)
was obtained from I; and the minimum value
(433.21 g-pot™!) was obtained from I, The interac-
tion between N, and I; produced the highest bio-
logical yield (497. 61 g-pot™). However, the lowest
biological yield (394.22 g-pot™!) was obtained for
the interaction between N, and I; (Table 1).

Greater stover yield and biological yield of maize
in response to nitrogen may be due to the fact that
nitrogen plays an important role in plant growth
and development. Ren et al. (2022) reported that ni-
trogen helps to promote more biomass by support-
ing chlorophyll production in leaves. In contrast,
the small difference in stover yield and biological
yield for greater irrigation frequencies may sug-
gest that maize plants might exhibit a threshold be-
yond which surplus water negatively impacts crop
growth. Kaur et al. (2020) reported that available wa-
ter is essential for optimum plant growth and nutri-
ent uptake. However, over-irrigation results in water
logging and reduced oxygen supply to the root zone,
followed by leaching of nutrients. Consequently, the
influence of irrigation frequency on stover yield may
not have as high an impact as nitrogen rates since
water availability has a dual role in nutrient and
plant physiological process interactions.

Untitled
Chlorophyll content
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Fuzzy expert system (FES) — based decision
systems. This section elucidates the findings re-
garding the performance and effectiveness of the
fuzzy rule-based decision systems implemented
in the experiment. It discusses the system's ability
to interpret input data, generate appropriate deci-
sions, and its overall impact on optimising plant
management practices.

Data analysis and simulation with Matlab fuzzy
toolbox. In this part, crisp values from the agro-
nomic field research have been applied to the fuzzy
logic control system. In the thesis paper, nitrogen
fertilization and irrigation schedule were measured
with leaf chlorophyll content based on RGB colour
code, and evaporation pan reading was described
in the fuzzy logic system among all parameters.
Chlorophyll (Chl) is an important photosynthetic
pigment for plants, largely determining photosyn-
thetic capacity and plant growth (Li et al. 2018).

We use Matlab's fuzzy toolbox to implement our
algorithm. Figure 6 depicts a fuzzy inference system
with two Matlab inputs (ChNyg; value for nitrogen
fertilisation and pan evaporation level for irrigation
frequencies) and two outputs (nitrogen fertilisation
& irrigation frequencies).

Membership functions were created using Mat-
lab's FIS Editor and membership function editor.

Nitrogen fertilization

(mamdani)

Evaporation pan level

Irrigation scheduling

Figure 6. The fuzzy inference system consists of two inputs (ChNygg value for N fertilisation and pan evaporation

level for irrigation frequencies) and two outputs (nitrogen fertiliser and irrigation frequencies)
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To obtain the membership function of the output
category, the range of the output variable was first
set to 100. The parameters for each category were
then configured (Othman et al. 2014). A triangular
membership function was used in this study.

Fuzzy set of the input variable. Fuzzy-based
modelling variables were developed to schedule ir-
rigation frequencies for nitrogen fertilisation and
pan evaporation levels. For both variables, three
fuzzy sets were defined: low, medium, and standard,
with numerical values derived from experimental
analysis (Table 1, and Figure 7).

Fuzzy set of the output variable. Generalizing
the methodology of the FRBS output variables, three
fuzzy sets were defined for both nitrogen fertiliser
rates and irrigation frequency: low, moderate, and
standard (Figure 8). Furthermore, fuzzy triangular
sets were used to reduce complexity because they are
widely used and require only the peak value and the
width of its base to be determined. (Viais et al. 2019)

https://doi.org/10.17221/35/2024-RAE

Fuzzy rules base. We considered the 9 (3 x 3)
combinations among the fuzzy sets of the two in-
put variables to obtain the rules base. Thus was cre-
ated 9 pairs of the form nitrogen fertiliser rate x ir-
rigation frequencies according to methodology
(Khoshnevisan et al. 2014). The rules were created
after the input and output membership functions
were developed. In total, 15 rules statements were
created in step 4 to classify maize N fertilization
and irrigation (Figure S1 in Electronic supplemen-
tary material — ESM). The rule viewer also consists
of the defuzzification results (Figure S2 in ESM).
The first and second columns represent leaf chlo-
rophyll content and evaporation rate values, while
the third and fourth columns represent the Nitro-
gen rates and irrigation frequencies for maize cul-
tivation. Finally, the last two columns, the category
column, show the defuzzification results.

Surface view. The surface rule viewer of the fuzzy
inference system in Matlab produces a 3D surface

Figure 7. Triangular membership function of input fuzzy set

Figure 8. Triangular membership function of the fuzzy output set
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Table 2. Fuzzy set of input and output with percentages

https://doi.org/10.17221/35/2024-RAE

Input fuzzy set

Output fuzzy set

leaf chlorophyll content evaporation (%)

nitrogen fertiliser rate (kg-ha™!)

irrigation frequencies (%)

standard (60-80)
medium (45-60)
low (0-4)

high (75-100)
medium (50-75)
low (0-50)

medium (275-412)
standard (412-550)

low (0-275) standard ( 75—-100)
medium (50-75)

low (0-50)

plot to visualise the relationships among chloro-
phyll content, N fertilizer application rates, and
evaporation levels (Figure S3 in ESM).

The agronomic experiment method is used
to compute the pertinence functions of the fuzzy
sets of this study's outcome variables (Daniel
et al. 2019). Figures 7 and 8 show that it was pos-
sible to determine the intervals indicating the
most significant degree of pertinence of each item
of the input and output variables of a given fuzzy
set. Suppose an experiment was carried out under
the same conditions during the same period de-
scribed. In that case, the classifications presented
in (Table 2) are possibly invariant or have no signif-
icant changes, making the result relevant. We have
the following values (Table 2.) measured for some
combinations of input fuzzy sets for leaf chloro-
phyll content and yield output variable (for other
output variables and combinations of fuzzy input
sets, the procedure performed was analogous).

Setting up the rules for the fuzzy system (Table 2)
shows how the fuzzy sets of inputs relate to the out-
put variables and how the median values for each
combination of fuzzy input sets are determined.

CONCLUSION

The evaluation of fuzzy expert systems combined
with RGB colour code analysis and a customised
irrigation schedule has shown significant prom-
ise in transforming precision maize production
in Bangladesh. This integration merges traditional
agricultural wisdom with advanced technologies,
offering a more adaptive and efficient method
to enhance crop yield and ensure sustainable re-
source management. Fuzzy expert systems refine
decision-making in nitrogen fertilisation, allowing
optimal nitrogen use and reducing environmental
and economic impacts. RGB colour code analysis
provides visual insights into maize health, enabling
real-time decisions tailored to each field's condi-
tions. This research developed the need-based op-
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timum dose of nitrogen fertilisation and irrigation
at the proper time for maize growth and yield with
the fuzzy expert system. This holistic approach
combines traditional knowledge with technology,
addressing food security, economic sustainability,
and environmental resilience in maize production.
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