Stability of soil moisture sensors for agricultural crop cultivation

Sitti Nur Faridah l *, Muhammad Tahir Sapsal l , Tisha Aditya A. Jamaluddin 2 , Andini Dani Achmad 3 , Muhammad Adi Surya l

Citation: Faridah S.N., Sapsal M.T., Jamaluddin T.A.A., Achmad A.D., Surya M.A. (2025): Stability of soil moisture sensors for agricultural crop cultivation. Res. Agr. Eng., 71: 88–94.

Abstract: Soil water content is critical in plants' morphological and physiological processes; therefore, water must always be available in appropriate quantities to meet plant growth needs. Soil moisture can be easily detected using sensors, which offer a practical solution for monitoring water content in the soil. However, using sensors for a long time, especially on agricultural land, will reduce sensor accuracy. This research aims to investigate the accuracy of soil moisture sensors during their use for cultivating crops. Using sensors in sandy clay soil can detect soil moisture levels with an accuracy of 93.80% and a precision of 90.81%. A reading deviation (error) of up to 49.74% with a precision level of 75.69% occurred when the sensor had been used for 40 days. Regular cleaning and calibration of the sensor are necessary to obtain accurate soil moisture readings. A copper-based sensor module kit can be used to detect soil moisture with reasonable accuracy during plant growth with a 5–6 weeks harvest time.

Keywords: agricultural land; copper sensor; sandy clay; soil water content

Soil is an ideal plant-growing medium (Marcos & Muzaki 2022). Most of the water and nutrients required by plants are absorbed from the soil. The soil provides nutrients and mechanical support for plants, which is influenced by the water content in the soil (Purba et al. 2021). Soil water is important for plants, especially to fulfil transpiration in the process of assimilating the formation of carbohydrates and carrying the results of photosynthesis throughout plant tissues (Chaves et al. 2002; Hammer et al. 2021). Soil water dissolves nutrients in the soil, carries nutrients to the surface of plant roots, and transports nutrients through-

out plant tissue (Bhatnagar et al. 2019). According to Shao et al. (2008), a water deficit is the dominant factor inhibiting plant growth compared to other environmental factors. A water deficit in plants will inhibit metabolic processes, causing plants to become stunted and their development to be disrupted (Osakabe et al. 2014). According to Faridah et al. (2023) and Marjenah (2010), soil water content influences the morphological and physiological processes of plants; therefore, water must always be available in quantities appropriate to the needs of plant growth (Shock et al. 2002; Qin et al. 2021; Yu et al. 2021).

© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

¹Agricultural Technology Department, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia

²Energy Conversion and Conservation Research Center, National Research and Innovation Agency, South Tangerang Banten, Indonesia

³Electrical Engineering Department, Faculty of Engineering, Hasanuddin University, Gowa, Indonesia *Corresponding author: faridah_sn@agri.unhas.ac.id

Soil moisture is a critical parameter for managing agricultural production. For smart agricultural land irrigation, accurate and real-time soil moisture measurements must be conducted. Agricultural plants are usually 5-13 weeks old, especially food crops. To accurately detect soil moisture in plants, sensors can be used (Ganjegunte et al. 2012; Faridah et al. 2014; Lutfiyana et al. 2017; Yu et al. 2021). The sensor is very easy to use and does not require special maintenance. Changes in the volume of water in the soil, or soil moisture, can be observed through changes in the soil's ability to conduct electricity. The higher the volume of water in the soil, the higher the soil's ability to conduct electricity (Shevnin et al. 2007; Bhatt & Jain 2014; Hariri et al. 2019). Changes in voltage can be detected with a soil moisture sensor; this sensor consists of two probes that pass current through the soil, read resistance fluctuations in the soil, and send this information to the microcontroller in the form of voltage. The voltage information is then converted into soil moisture data (Lailhacar & Dukes 2010; Jumasa & Saputro 2019; Suparman et al. 2023)

The long-term use of sensors, particularly in the agricultural sector, can reduce sensor accuracy due to the influence of various environmental factors. (Lailhacar & Dukes 2010; Ganjegunte et al. 2012; Sui 2018; Kanso et al. 2020). Sensor calibration is essential to ensure accurate soil moisture detection in sandy clay soil. According to Hermawan (2005) and Candra et al. (2015), the ability of soil to absorb water depends on the type of soil; therefore, the use of sensor equipment needs to be calibrated because the level of sensor validity is related to soil characteristics (Shock et al. 2016; Brahma et al. 2017; Kanso et al. 2020). However, studies regarding the stability of soil moisture sensors are still very limited. This research investigates the accuracy of soil moisture sensors made from copper for cultivating crops.

MATERIAL AND METHODS

The Soil Moisture Sensor is a module designed to detect soil moisture, which can be accessed using microcontrollers such as Arduino or ESP32, enabling monitoring of soil moisture levels around plants offline and online. This research uses a soil moisture sensor made from copper with type HD 38 sensor specifications in Table 1.

Table 1. Specifications of soil moisture sensors

No.	Unit Specification		
1.	Voltage	DC 3.3-12 V	
2.	Current	20 mA (output current 30 mA)	
3.	Module dimensions	$36 \times 15 \times 7 \text{ mm}$	
4.	Probe length	8.8 cm	
5.	Cable length	2.2 m	
6.	Sensor connecting port	XH2.54 2P	
7.	Supported	Arduino, ESP8266, STM32, raspberry, relay module	

The HD 38 sensor module operates at a DC voltage of 3.3–12 V and has four pins, two for the power supply and two for different output modes (analogue and digital). When using the Digital Output Pin, the output will only be 1 or 0, with the conversion process done by reading the digital value using the command digitalRead (pin number). On the other hand, if using the Analog Output Pin, the output is a voltage value. If connected to an Arduino module, the display will show the converted voltage value to ADC, ranging from 0 to 1 023 (10-bit ADC mode) or 0 to 253 (8-bit ADC mode), with the reading done using the command analogRead (pin number). The soil moisture sensor system circuit is shown in Figure 1.

Statistical analysis. Calibration of the sensor using linear regression analysis involves comparing the voltage readings, which have been converted through the ADC (analogue-to-digital converter) feature on the Arduino module, with the moisture content measurements obtained through the gravimetric method. The electrical voltage that flows through the ground is proportional to the change in soil moisture.

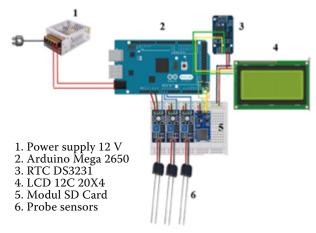


Figure 1. Series of soil moisture sensors systems

Moisture measurements were conducted in sandy clay soil using three sensors, with six repetitions for each measurement time. The accuracy of the sensor system was validated by comparing the sensor readings with the gravimetric method, with tests conducted on days 1, 40, and 80. Accuracy analysis was conducted using an equation (Gao et al. 2018; Cahyono et al. 2019):

$$Accuracy = 100\% - error (\%)$$
 (1)

$$Error = \left[\frac{sensor\ value - standard\ measurement\ value}{standard\ measurement\ value}\right] \times 100 \quad (2)$$

The level of sensor precision is analyzed using standard deviation with the equation (Bentley 2005):

RESULTS AND DISCUSSION

The calibration results show that the sensor output voltage decreases as the water content in the soil increases (Figure 2). In line with research conducted by Parashar and Parashar (2021), Schwamback et al. (2023), and Zhang et al. (2018), the sensor output voltage and soil water content are a linear function of negative correlation.

Figure 2 shows the linear relationship between soil moisture and voltage on the sensor, with an av-

Table 2. Characteristics of the kit module type soil moisture sensor

No.	Day	Sensors	Precision (%)	Accuracy (%)
1		1	91.03	94.68
	1	2	90.74	96.16
		3	90.70	90.55
		1	76.22	50.06
2	40	2	76.05	51.66
		3	74.80	49.06
		1	64.57	29.91
3	80	2	62.91	31.39
		3	63.57	30.82

erage R^2 value of 0.9272. The R^2 value is closer to 1, the more linear the comparison between soil moisture and voltage on the sensor, which indicates a better level of validation. According to Sulistyani et al. (2021) and Sir et al. (2016), sensor calibration with a linearity test is crucial for evaluating the method's validity; the more linear the regression line, the higher the validation level.

Soil moisture readings from the sensor on the first day ranged from 5.39 to 29.75%, while the gravimetric method showed values between 4.77 and 28.61%. The sensor error below 6.5% was found in 4 water volumetric treatments (66.67%) and two treatments above 10%. The average soil moisture from the sensor was 18.05% and gravimetric 17.18%, with an error of 6.20% (Figure 3).

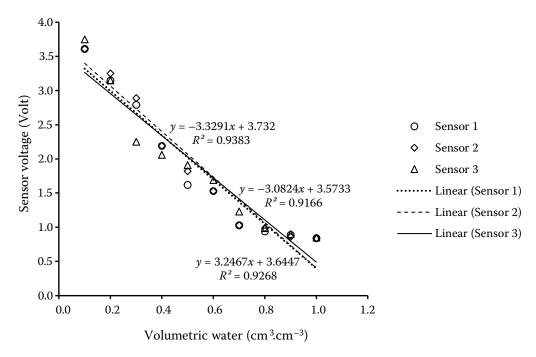


Figure 2. Sensor calibration

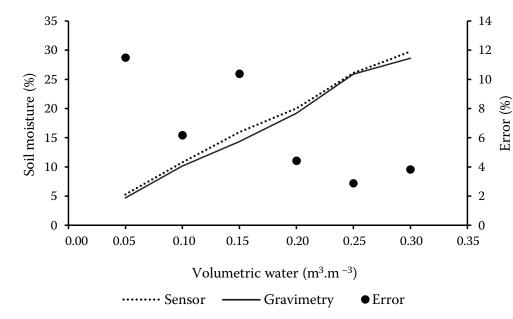


Figure 3. Relationship between soil moisture using the gravimetric method and sensor readings day 1

The sensor accurately detects soil moisture levels on day 1 of sensor use. The value of soil moisture from the sensor readings is close to that of the gravimetric method, with an accuracy of 93.80% (Table 2). The precision value is 90.81%, which shows that the sensor has quite high precision and on repeated measurements, the sensor produces a stable reading level for each measurement. The precision value shows high reading consistency with an average error of less than 6.5%. According to the statement of Cahyono et al. (2019) and Yudha and Sani (2017), precision measurements show the closeness of the value of each measurement on the sensor.

Sensor readings on day 40 exhibited an error of 49.74% and a precision of 75.69%. The sensor remained relatively accurate (89.38%) in detecting soil moisture levels below 10% (Figure 4). However, when the soil moisture exceeded 10%, the sensor accuracy dropped between 49.06 and 51.66% (Table 2). This decrease in accuracy was found with increased water volumetric, which is allegedly confounding the sensor readings. According to Lailhacar and Dukes (2010) and Taber et al. (2002), wet soil conditions, resulting from more frequent irrigation, contribute to higher sensor error. After 40 days of use, the sensor's accuracy decreased by 56.82%. To maintain ad-

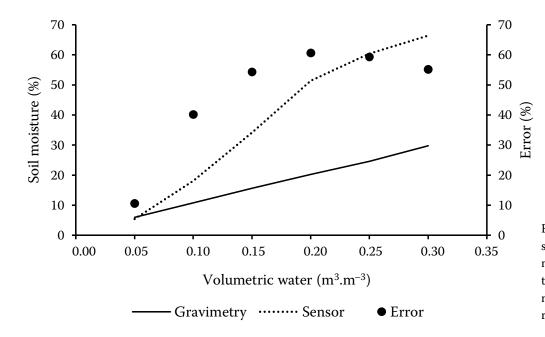


Figure 4. Relationship between soil moisture using the gravimetric method and sensor readings day 40

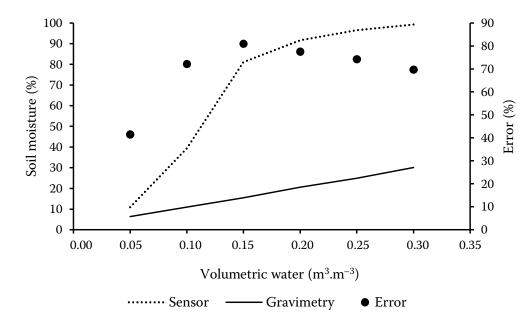


Figure 5. Relationship between soil moisture using the gravimetric method and sensor readings day 80

equate accuracy, it is essential to regularly clean and calibrate the soil moisture sensor. According to the statement by Hatanaka et al. (2015), Rosma et al. (2021), and Salman et al. (2021), to increase the accuracy of soil moisture sensors, a sensor calibration process is needed. According to Yudo (2018), cleanliness maintenance and sensor calibration are carried out routinely and periodically to anticipate data errors. The sensor must be calibrated for accurate and stable results (Gao et al. 2018; Qinglan et al. 2020).

On day 80, the soil moisture readings from the sensor ranged from 10.89 to 99.25%, while the gravimetric method indicated a range of 6.37 to 30.08%, with an error of 69.29% (Figure 5). Corrosion was found on several parts of the sensor probe; on the 80th day of use, the sensor was no longer accurate at 30.71% (Table 2). It is used for a long time, causing corrosion on the sensor probe. It is used for a long time, causing corrosion on the sensor probe. According to the research results of Songara and Patel (2022), most copper sensors will corrode within 2 months. Copper sensors can only detect soil moisture accurately enough for seasonal crops with a harvest age of about 40 days. In line with research by Hermawan (2005), using soil moisture sensors from copper can remain in the soil for 30-35 days.

CONCLUSION

Using a soil moisture sensor on sandy clay soil demonstrated an accuracy of 93.80% and a precision

of 90.81%. After approximately 40 days of use, the accuracy decreased by 56.82%. Maintaining cleanliness and regularly calibrating copper sensors can detect soil moisture quite accurately during plant growth with a 5–6 weeks harvest age. With advancements in data analytics and artificial intelligence, sensors can provide more in-depth analysis and more accurate predictions regarding irrigation needs, drought potential, and the impact of climate change on soil moisture.

Acknowledgement

The authors express their gratitude to the Chancellor of Hasanuddin University for the support of the research.

REFERENCES

Bentley J.P. (2005): Principles of Measurement Systems, Pearson-Prentica Hall, New Jersey.

Bhatnagar V., Chandra R., Prasad J. (2019): Soil moisture sensors for sustainable irrigation: comparison and calibration. International Journal Sustainable Agricultural Management and Informatics, 5: 25–36.

Bhatt S., Jain P.K. (2014): Correlation between electrical resistivity and water content of sand – A statistical approach.

American International Journal of Research in Science,
Technology, Engineering & Mathematics, 6: 115–121.

Brahma M., Goswami B., Kalita M. (2017): Design of soil moisture sensor for validation of passive microwave remote sensed soil moisture data. ADBU-Journal of Engineering Technology, 2: 67–71.

- Cahyono B.E., Utami I.D., Lestari N.V., Oktaviany N.S. (2019): Characterization of the LDR sensor and its application in an Arduino Uno-based water turbidity level measuring instrument. Jurnal Teori dan Aplikasi Fisika, 7: 179–185. (in Indonesian)
- Candra H., Triyono S., Kadir M.Z., Tusi A. (2015): Design and test performance system automatic control on drip irrigation using microcontroller Arduino Mega. Jurnal Teknik Pertanian Lampung, 4: 235–244. (in Indonesian)
- Chaves M.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P.P., Osorio M.L., Carvalho L., Faria T., Pinheiro C. (2002): How plants cope with water stress in the field, photosynthesis and growth. Annual Botany, 89: 907–916.
- Faridah S.N., Mubarak H., Jamaluddin T.A.A., Samsuar S. (2023): Morphology and physiology of kale plants under excess and deficient water condition. International Journal of Vegetable Science, 29: 348–355.
- Faridah S.N., Suhardi S., Waris A. (2014): Performance of soil moisture control system on sprinkler irrigation system operation. Journal of AgriTechno, 6: 1–9.
- Ganjegunte G.K., Sheng Z., Clark J.A. (2012): Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater. Applied Water Science, 2: 119–125.
- Gao H., Zhu Y., Liu C., Qian H., Cao W., Ni J. (2018): Design and test of a soil profile moisture sensor based on sensitive soil layers. Sensors, 18: 1–23.
- Hammer G.L., Cooper M., Reynolds M.P. (2021): Plant production in water-limited environments. Journal of Experimental Botany, 72: 5097–5101.
- Hariri R., Novianta M.A., Kristiyana S. (2019): Design of the Blynk application for monitoring and controlling plant watering. Electrical Journal, 6: 1–10.
- Hatanaka D., Ahrary A., Ludena D. (2015): Research on soil moisture measurement using moisture sensor. 4th International Congress on Advanced Applied Informatics, Okayama, Jul 12–16, 2015: 663–668.
- Hermawan B. (2005): Monitoring soil water content using dielectrical properties at corn field. Jurnal Ilmu-ilmu Pertanian Indonesia, 7: 15–22. (in Indonesian)
- Jumasa H.M., Saputro W.T. (2019): Prototype of plant waterer and soil moisture meter based on Arduino Uno. Journal of INTEK, 2: 47–54.
- Kanso T., Gromaire M.C., Ramier D., Dubois P., Chebbo G. (2020): An investigation of the accuracy of EC5 and 5TE capacitance sensors for soil moisture monitoring in urban soils-laboratory and field calibration. Sensors, 20: 6510.
- Lailhacar C., Dukes M.D. (2010): Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural Water Management, 97: 666–672.
- Lutfiyana L., Hudallah N., Suryanto A. (2017): Design of soil temperature, soil moisture and resistance measuring instruments. Journal of Electrical Engineering, 9: 80–86.

- Marcos H., Muzaki H. (2022): Monitoring temperature and soil moisture in papaya cultivation. Jurnal Teknologi dan Sistem Tertanam, 3: 32–43. (in Indonesian)
- Marjenah M. (2010): Effect of soil moisture content to growth and transpiration of *Shorea leprosula* Miq. seedling. Jurnal Penelitian Oipterokarpa, 4: 11–24. (in Indonesian)
- Osakabe Y., Osakabe K., Shinozaki K.P., Tran L.S. (2014): Respone of plants to water strees. Plant Science, 5: 1–8.
- Parashar V., Parashar A. (2021): Design and development of copper based low-cost sensor for monitoring moisture in the fields. Materialstoday: Proceedings, 47: 7115–7120.
- Purba T., Ningsih H., Purwaningsih, Junaedi S.A., Gunawan B., Junairiah, Firgiyanto R., Arsi A. (2021): Soil and Plant Nutrition. Yayasan Kita Menulis Medan, Indonesia. (in Indonesian)
- Qin A., Ning D., Liu Z., Duan A. (2021): Analysis of the accuracy of an FDR Sensor in soil moisture measurement under laboratory and field conditions. Journal of Sensors. Special issue 2021: 1–10.
- Qinglan S., Yujiao S., Xiaochen L., Shuli M., Lei F. (2020): A high-sensitivity multilayer soil moisture monitoring sensor based on a double high-frequency tuning detection circuit. International Journal of Distributed Sensor Networks, 16: 1–12.
- Rosma I.H., Sukma D.Y., Solihin I.M. (2021): Microcontroller-based automation of drip fertigation systems for plants. Journal of Electrical Engineering, 13: 34–41.
- Salman A.K., Aldulaimy S.E., Mohammed H.J., Abed Y.M. (2021): Performance of soil moisture sensors in gypsiferous and salt-affected soils. Biosystems Engineering, 209: 200–209.
- Schwamback D., Persson M., Berndtsson R., Bertotto L.E., Kobayashi A.N.A., Wendland E.C. (2023): Automated low-cost soil moisture sensors: Trade-Off between cost and accuracy. Sensors, 23: 1–18.
- Shao H.B., Chu L.Y., Jaleel C.A., Zhao C.X. (2008): Water deficit stress induced anatomical changes in higher plant. Comptes Rendus Biologies, 331: 215–224.
- Shevnin V., Mousatov A., Ryjov A., Delgado-Rodriquez O. (2007): Estimation of clay content in soil based on resistivity modelling and laboratory measurements. Geophysical Prospecting, 55: 265–275.
- Shock C.C., Feibert E.B.G., Seddigh M., Saunders L.D. (2002): Water requirements and growth of irrigated hybrid poplar in a semi-arid environment in Eastern Oregon. Western Journal of Applied Forestry, 17: 46–53.
- Shock C.C., Pereira A.B., Feibert E.B.G., Shock C.A., Akin.A.I., Unlenen L.A. (2016): Field comparison of soil moisture sensing using neutron thermalization, frequency domain, tensiometer, and granular matrix sensor devices: Relevance to precision irrigation. Journal of Water Resource and Protection, 8: 154–167.

- Sir T.M.W., Udiana I.M., Isu S.R. (2016): Comparison of clay soil water content measurements using the gravimetry method and the gypsum block method based on depth variations. Journal of Civil Engineering, 5: 213–226.
- Songara J.C., Patel J.N. (2022): Calibration and comparison of various sensors for soil moisture measurement. Measurement, 197:111301.
- Sui R. (2018): Irrigation scheduling using soil moisture sensors. Journal of Agricultural Science, 10: 1–11.
- Sulistyani M., Kusumastuti E., Huda N., Mukhayani F. (2021): Method validation of functional group analysis of geopolymer with polyvinyl chloride as additive using fourier transform infrared. Indonesian Journal of Chemical Science, 10: 198–205.
- Suparman D.D.P., Dharmawati N.D., Pinandito K., Putri A.G. (2023): Design of an automatic sprinkler using a microcontroller-based soil moisture sensor in coffee plants. Jurnal Ilmiah Teknologi Pertanian Agrotechno, 8: 28–35. (in Indonesian)

- Taber H.G., Lawson V., Smith B., Shogren D. (2002): Scheduling microirrigation with tensiometers or watermarks. International Water & Irrigation, 22: 22–26.
- Yudha P.S.F., Sani R.A. (2017): Implementation of the HC-SR04 ultrasonic sensor as an Arduino-based car parking sensor. Einstein's Journal, 5: 19–26.
- Yudo S. (2018): Development of a water quality monitoring system to monitor industrial wastewater online. Indonesian Water Journal, 9: 1–7.
- Yu L., Gao W., Redmond R., Shamshiri R., Tao S., Ren Y., Zhang Y., Su G. (2021): Review of research progress on soil moisture sensor technology. International Journal of Agricultural and Biological Engineering, 14: 32–42.
- Zhang X., Yang C., Wang L. (2018): Research and application of a new soil moisture sensor. In: MATEC Web of Conferences: International Forum on Construction, Aviation and Environmental Engineering-Internet of Things, Guangzhou, May 11–13, 175: 02010.

Received: March 27, 2024 Accepted: March 11, 2025 Published online: April 22, 2025