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Springs often work in the regime of cyclic load-
ing forces. Because they can be exposed to tens, 
hundreds or millions of loading cycles during their 
service life, they are prone to material fatigue that 
can cause rupture. Springs exposed to this kind of 
load are most frequently designed for a constant 
fatigue limit. However, we do not find a typical 
fatigue limit for a number of materials of which 
springs are made; for this reason, springs are usu-
ally designed for a high-cycle fatigue limit. This 
paper deals with the methods for determining the 
safety of helical coiled springs working in various 
regimes of harmonic load in a high-cycle region.

DETERMINING THE LOAD OF HELICAL 
COILED SPRINGS

The most frequent loading and determination of 
stress conditions in helical coiled springs (pitch 
diameter D and pitch of spring s) are described 
in every basic literature dealing with the design 
of basic machine components. Let us summarize 
here for completeness that during the axial load of 
a spring by force F, the spring wire is exposed to 
stress in the considered cross section (perpendicu-
lar to the wire longitudinal axis) by the vector of 
moments, M, and the vector of forces, F. Vector M, 
which can be resolved into two components, causes 
bending stress (component Mo) and torsion stress 
(component Mk). Analogously, the vector of force 

F causes stress in the considered cross section by 
shearing component T (or, as the case may be, by 
a tensile force N), as indicated in Fig. 1.

Under the assumption that the lead angle α of 
the spring is small (in practice, up to 5 degrees), 
components Mo , T and N can be neglected and the 
dominant stress of the spring wire arises from the 
torsion. The shear stress (wire of a circular cross 
section with diameter d) increases linearly with 
radius ρ and assumes the rated design value on the 
wire surface, which is described by the following 
well-known relations (see also Fig. 1):

 

  (1)

However, the surface shear stress is not the same 
everywhere as the consequence of the spring helical 
shape. It is well known that the limit shear stress is 
reached in the points lying at the inside diameter 
of the spring, as illustrated in Fig. 1.

This fact also affects (although to a small extent) 
the deformation of the spring. In the cited literature, 
but also in other manuals and standards, relations 
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can be found that describe this shape concentration 
of the stress and the correction for deformation in 
quantitative terms.

It holds according to YOUNG (1989) 

τmax = τnom × ψ,    yactual = y × φ (2)

where: ψ , φ – correction coefficients for the stress and 
      deformation.

These coefficients can be determined from ap-
proximation relations:

 , , 

Plots of the dependence of both correction coef-
ficients are in Fig. 2.

We have verified the values of the dependence 
of the correction coefficient of the tension by nu-
merical computations with the help of FEM. We 
used ABAQUS software for these calculations. The 

spring was modelled parametrically with the op-
tion of changing the D/d ratio for the chosen pitch 
of the spring. The model was formed by 8 nodal 
points C3D8R in the region of the entire coiling and 
4 nodal elements C3D4 in the region of truncation 
(see Fig. 3).

The results of the dependence of the reduced ten-
sions according to the HMH hypothesis for both 
limit alternatives of the modelled ratios (D/d = 10 
and 2.1) are illustrated in Fig. 4. From the evalu-
ation of the dependence of shear tensions in the 
transversal cross section (see Fig. 3), values of the 
correction coefficients were evaluated for tensions; 
they are compared in Fig. 2 with the dependence 
obtained according to the analytical formula. The 
difference between the calculated and theoretical 
values can be explained by the fact that the FEM 
calculations include the effect of the shear force and 
bending moment, which was neglected in analyti-
cal formulas.

FATIGUE LIMIT OF SPRINGS

When designing springs for a constant strength, 
it is necessary to know the fatigue limit,τC*, for the 
considered spring. The fatigue limit can be found, 
for example, by examining the Wöhler fatigue curve 
(S-N curve). If the results of fatigue tests of real 
springs are not available directly, it is possible to 
estimate this value from fatigue limits σC or, as the 
case may be, τC of the Wöhler curves determined 
on etalon samples of a given material during the 
tensile stress (bending stress) or torsion stress. The 
basic type of test is carried out during symmetri-
cally alternating load (with the coefficient of cycle 
asymmetry R = –1) on polished samples of small 

Fig. 1. Components of forces and moments loading the wire 
of a helical coiled spring
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ficients for the determination of
the limit tension and actual defor-
mation of a helical coiled spring 
depending upon its dimensions
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diameters. Because many materials used for springs 
(special steel, plastic, etc.) do not have a typical 
asymptotic value of the fatigue limit, it is necessary 
to count on a value for a high-cycle time-dependent 
fatigue limit (for example, for the number of cycles 
NC = 2×106…107 corresponding to the number of 
cycles of the working regimes). If the fatigue limits 
for the torsion stress are not available, they can be 
estimated from the values obtained for the tensile 
stress utilizing the validity of the “static” strength 
hypothesis, i.e. according to the relation

 
(3)

where: λ = 2 for the hypothesis of maximum shear stress or  
    λ = √–3 for the HMH hypothesis (Huber-Mises- 
    Hencky).

The above-indicated differences between the fa-
tigue limits of a real spring and the etalon sample 

should be corrected by the size effect coefficient κv, 
surface quality coefficient κp or, as the case may be, 
coefficient κt of the material processing technology. 
Using this approach, we obtain τC* = τC × κv × κp × κt.  
Magnitudes of these coefficients can be found in
fatigue manuals (for example, in RŮŽIČKA et al. 
1992). It should be emphasized that the surface 
treatment of the spring wire or, as the case may be, 
damage to its surface that may arise during spring 
winding has a significant effect on the resulting fa-
tigue limit of springs; therefore, the surface quality 
should be checked carefully.

The effect of the mean component of tension τm 
is another important factor in the fatigue of mate-
rial. Its effect can be taken into account by the limit 
points τA, τM on the curves in the Haigh diagram 
(see Fig. 5).

Fig. 3. Parameterized grid for FEM calculations and data collection in the transversal cross section along the wire cir-
cumference
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The limit curves can be parameterized, for ex-
ample, by the relation

  (4)

when s = 1 is obtained for linear dependence, s = 2 
for a parabola, etc. Values τf can be considered as 
the actual static breaking resistance in torsion; or the 
breaking resistance can be estimated from the value 
obtained during a tensile test analogously to Eq. (3).

WORKING REGIMES OF SPRINGS

The most frequent load of springs is either the ba-
sic static load (for example, by the machine mass or 
a preload generated by setting the working point of 
the spring mechanically), or a dynamic load causing 
fatigue load. The dynamic load is most frequently 
harmonic with frequency f given by the oscillation 
of the harmonic oscillator, yG

where: yG denotes the static compression (elongation) of the 
spring by the own weight of the oscillating mass m and g is 
the gravitational constant.

In the following sections, we will discuss just this 
type of loading. Stochastic loading is a more general 
case of spring loading caused by an exciting force of 
random values. However, the analysis of the serv-
ice life for this region is outside the scope of this 
contribution. If the random peaks of tension am-
plitudes do not exceed the corresponding (equiva-
lent) values of the amplitudes of the harmonic load 
for springs designed for unlimited service life, the 
safety of this spring will always be higher than dur-
ing its own harmonic load.

The safety of springs is determined for the fol-
lowing three loading regimes: Individual loading 
regimes can be represented by a set of working 
points P that fill in the working curves (here, 
straight lines). The intersection of the loading 
curve with the limit fatigue curve in the Haigh 
diagram (see Fig. 5) determines the limit point of 
fracture M. If the loading force is parameterized by 
coefficient λ, it holds for the parameter in working 
point P that λ = 1. It holds that λ = k on the limit 
curve when safety k is achieved. Using this method, 
the safety of the spring loaded in all three selected 
working regimes is determined. Let us consider 
for simplicity a straight limit curve of the Haigh 
diagram, i.e. the equation with exponent (s = 1). 
In this case, the equation holds for this curve in a 
sectional form:

  (5)

1. Regime with a constant mean tension,  
τm = const. (Fig. 6)

The working amplitude of the tension in the 
spring, τM = τm, is proportional to the working 
power; therefore, it holds for the limit amplitude 
(at point M) that τA = k1 × τa, while the mean ten-
sion remains the same, τM = τm. After substituting 
into the equation of the limit curve (5), we express 
safety k1 as:
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  (6)

2. Regime of the proportional loading in compo-
nents τa, τm (Fig. 7)

Both components change proportionally to pa-
rameter λ, so that it holds on the limit curve that, 
τA = k2 × τa, τM = k2 × τm.

After substituting into Eq. (5), we obtain:

  (7)

3. Regime with a constant low tension  
τd = const. (with static preloading, Fig. 8)

In the Haigh diagram, this case can be represent-
ed by a straight line parallel to the repeated loading 
cycle (i.e. subtending an angle of 45°), because the 
loading line indicates the value of the bottom ten-
sion with a constant magnitude as an intersection 
on both axis, τd = const.

The equation for this regime has the following 
form:

 , with τd = τm – τa. 

After substitution, we obtain τM = τA + τm – τa. 
Because the amplitude of the tension changes pro-
portionately to parameter λ during the growth of 
the amplitude of the loading force, it holds again 
that τA = k3 × τa on the limit curve. After substituting 
into the equation of the limit curve of the Haigh 
diagram (5), the required safety k3 is obtained as

  (8)

COMPARISON OF REGIMES  
AND CONCLUSION

A specific example of the calculation of safety 
enables the mutual comparison of the regimes. Let 
us consider a fatigue limit of a specific spring with  
τC* = 300 MPa. Let the actual breaking resistance 
be τf  = 1,000 MPa. Let the basic amplitude of the 
working tension at a “unit force” be τa = 50 MPa. 
We expect to create a preloading of τd = 5τa in case 
No. 3. For the increasing values of parameter λ, 
the results of the safety changes are plotted in the 
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graph in Fig. 9. It is therefore obvious that in the 
region of the working loads, regime No. 1 leads 
to the highest safety. Conversely, the regime with 
preloading (No. 3) provides the lowest safety at the 
working level; it is therefore necessary during the 
design work to pay attention to the correct category 
of the working regime of springs according to the 
specific actual operation.

Fig. 9. Comparison of the results of the calcu-
lation of safety for three alternatives of loading 
springs
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Režimy zatížení a dimenzování na únavu válcových vinutých pružin

ABSTRAKT: Pružiny pracují často v režimu kmitavých zatěžovacích sil. Protože během své životnosti mohou absolvovat 
desítky, stovky až miliony zatěžovacích kmitů, hrozí u nich nebezpečí vzniku únavy materiálu, která může způsobit jejich 
porušení. Článek pojednává o faktoru koncentrace napětí na vnitřním poloměru válcových pružin a určení velikosti této 
koncentrace pomocí MKP. Výsledky těchto výpočtů pak byly srovnány s korekčními funkcemi publikovanými v literatuře. 
Určení bezpečnosti pružin s ohledem na mez únavy bylo provedeno pro tři typické zatěžovací režimy, které jsou znázorněny 
v Haighově diagramu. Z výsledků vyplývá, že nejmenší bezpečnost získáme pro případ se statickým předpětím pružiny.

Klíčová slova: pružiny; únava materiálu; zatěžovací režimy; bezpečný únavový život
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