Exploitation of Hertz’s contact pressures in friction drives
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Abstract: The paper is intent on the applications of equations which describe the Hertz’s surface pressures in friction

drives. In the paper the reduced equations are derived, which are useful to the surface pressures calculation in friction

drives when ball — ball, cylinder — cylinder, cone — cone are kept in touch and their graphical representation of stress

distribution in the contact area is presented. Using the Hertz’s surface pressures and the Mohr’s circles the substance

of pitting start is derived and the stress distributions using the elementary joists, which were situated on the axe z in

the section under the contact joist, are represented.
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At friction drives the circumference power is
transmitted by friction from one rolling body to
the second. Always the thrust is necessary. At most
designs of friction drives it deduces high forces
to shafts and bearings. Therefore the high surface
pressures result on the contact joists. These pres-
sures are one of main factors which influence the
friction drives.

The basic condition of friction drive is based on
the equilibrium of circumference power F and fric-
tion power F. When we speculate about the degree
of safety k (starting, turning-out, impact influences
etc.) we get the basic condition in the form

F xk=F, (1)

When we express the friction power as the prod-
uct of the thrust F, and coefficient of friction fand
introduce it in the foregoing equation we get the
basic condition of the friction drive (Figure 1).

FOXk:fXFn (2)

According to the contact we can classify the sur-
face pressures as the surface contact, line contact,
point contact.

According to the material elasticity we can classify
the surface pressures in:

Hertz’s pressures — the modulus of elasticity in
tension of both materials is constant, owing to load
it does not vary.
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Stribeck’s pressures — the modulus of elasticity in
tension of one of materials is not constant, it varies
according to the load (rubber, plastic etc.).

In friction drives operation the Hertz’s pressures
are in foreground and they influence considerably
the drive, namely pressures with line and point
contact.

Therefore this paper is intent on these pressures.

Figure 1. Functional diagram of the friction drive
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Hertz’s surface pressures

Asearlyas in the year 1881 Heinrich Hertz formu-
lated the relation between the load value of projected
area of surface pressures and the bringing near at
the contact of generally curved bodies. The solution
derived by Heinrich Hertz gives only the orienta-
tion values of contact pressures. The in this way
calculated contact pressures can very in some cases
as much as 50% from real values (KLAPRODT 1980).
Later much authors tried to describe the contact
pressures theory. But till now the accurate solution
of the contact pressures calculation was not found.
(KLaPrODT 1980; BOLEK & KOCHMAN 1990).

Heinrich Hertz introduced several simplified
premises.

The place of the highest stress is under the middle
of the upper surface of function of both bodies and
near the front surface is the accumulation of stress.

The modulus of elasticity in tension of both ma-
terials is constant, it does not vary according to the
load. Strains are regarding to the bodies sizes very
low and their profile is in one plane (HERTZ 1896).

For the calculation these four laws defined by
Heinrich Hertz are valid.

(1) Isotropy and homogenity of projected area ma-
terial.

(2) In the course of deformation the Hooke’s law
must be valid.

(3) Shear stress is equal to zero. The influence about
friction is not speculated.

(4) Projected areas are equal.

Point Contact

Two spherical bodies are contiguous in only one
point. Owing to load and deformation of the bodies
the point contact varies into surface contact (Fig-
ure 2). This surface is elliptic. When the bodies are
geometrical identical, the contact surface is circular
(HERAK 2005; ZACHARIAS 2005).

The maximum sizes of an ellipse the main radiuses
are in the main geometrical directions of the contact
surface. For calculation Hertz replaced this ellipse
by a circle of the same surface (HErRTZ 1896). Then
he derived the equation for the diameter of the con-
tact surface 8 (TIMOSHENKO & GOODIER 1951)

3F
6=2m 3 —— (3)

Expu
where:
F —load force,
m — coefficient which characterizes the pressure distribu-

tion between bodies. The m value is calculated using

108

Figure 2. Diagram of the point contact

the solution of elliptic integrals. The coefficient m can
be found in form of a table in the literature (FROHLICH
1980).

p,; — the sum of the surfaces curvature radiuses.

Py =ttt (4)
g Ry Ry

where:

r, 7p R, R, — curvature radiuses of single bodies in the

directions of main planes.
In the case of the concave contact they are
added (+), in the case of the convex contact
they are subtracted (Figure 3).

E — theoretical reduced modulus of elasticity in
tension of the contact bodies.

LI S B (5)
E, E,  E, )2
E L, — constrained modulus of elasticity in tension

(the bodies cannot arbitraily deform, their

deformations interact)

E
Ela = E = 2 (6)

2’ 20 2

I-p;

where:
El,E2 — modulus of elasticity in tension of single bodies,
U, U, — Poisson’s ratio of single body materials.

E, - reduced modulus of elasticity in tension:

Figure 3. Concave (+) and convex (—) contact of the bodies
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Table 1. Material of contact couples and its reduced modulus

of elasticity in tension

Material of contact Reduced modulus of elasticity

couples in tension £, (MPa)

Steel + steel 226 000

Steel + bronze 152 500

Steel + gray iron 121 500

Ep =3/ Ep (7)

where:
¢, — constant which expresses the material influence of

bodies which contact.

For steel/steel ¢, = 1 for other materials combi-
nation the values are shown in Table 1 (FROHLICH
1980).

After introducing in former equations we can de-
termine the reduced modulus elasticity in tension
for most often used contact couples.

When we know the diameter value of the contact
surfaces & we can simply determine the surface
stress p_ (we presuppose the even, rectangular pres-
sure distribution) (Figure 4).

_F F o
PomgT ®)
4

But the real contact stress distribution is para-
bolic. For the point contact the ratio between the

F

o®

F

Figure 4. Contact of two spheres
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average contact stress and maximum contact stress
(HErRTZ 1896; TIMOSHENKO & GOODIER 1951)

o =15xp, )

ma:

After simple introduction we can write the equa-
tion

After the equation adaptation, simplification and
introduction in former equation we can write the
equation for the maximum contact pressure at the
point contact.

F
o =1.5-

max 2

3F
Erpy

(11)

| 23

The maximum contact stress value depends on the
load, material of contact bodies, bodies geometry
and contact type (concave, convex).

For different geometry of any bodies the calcula-
tion can be made using the former equations, but
for calculation the bodies must be substituted by
osculating circles and the cage solved as the point
contact of two spheres.

Contact stress — contact of two spheres

We describe the calculation of contact stress of
two spheres, for calculation we choose the steel of
body materials. For other materials the calculation is
the same, only the material constants are others.

From former chapter we know the reduced modu-
lus of elasticity of the contact bodies (steel + steel):
E, =226 000 MPa

The sum of main planes flexion radiuses we deter-
mine according to the equgtion

1+—

1 1 1 1 D
=+t —=4
pHrRer

(12)

When we introduce the former equation in the
equation (3), we get the equation for the contact
surface diameter.

3F 3F
0=2m3; =2x0.45
Expu 3

226000 4

4 (13)

1+—

d

The mean coefficient m for the contact of two
spheres steel/steel is approximately equal to
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m = 0.45. The value depends on the flexion and the
total geometry of the bodies (FROHLICH 1980). By
simple adaptation we get the equation for the diam-
eter of the deformed surface.

(14)

The symbol +/— determines the concave and con-
vex contact.

After introduction in the relation (11) the equa-
tion derived by us for the contact surface diameter
we get the relation for the maximum contact stress
value of two steel spheres

4F

o =15
76>

=15

after a simple adaptation we get

F 2
0 o =21503 —(uij (16)

d’ D

Line contact

It is a contact of two cylindrical bodies, the theo-
retical contact line is deformed by load into a tetra-
hedral concurrent surface.

In practice the contact stress is calculated by use
of substituted contact cylinders, both cylindrical
bodies are substituted by cylindrical bodies with
reduced radiuses.

Contact cylinder with cylinder

At the contact of two cylinders the contact line
grows in the tetrahedral form.

For the contact surface calculation Hertz derived
following relation (HERTZ 1896; TIMOSHENKO &
GOODIER 1951).

8 F
6=2 | —x——
\/7’( bxEg xpy

All quantities are the same as at the point contact
calculation, in addition the length of the contact
line b appears.

If we know the contact surface diameter, we can
simply determine the mean surface pressure p_(we
presume the contact distribution uniform, tetrahe-
dral) (Figure 5) (SvEc 1999).

(17)

F F

=—=— (18)
S ob

Ps

But the real course of contact pressure is para-
bolic. For the point contact the ratio between the
mean surface pressure and the maximum contact
stress was determined.

Control of Food Quality and Food Research. = 1.28 ps(19)

After simply introduction we can write the equa-
tion

F
dxb

o =128

max

(20)

By adaptation, simplification and introduction in
the former equation we can write the equation for
the maximum contact pressure quantity at the line
contact.
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Figure 5. Diagram of two cylinders contact
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F

bxz Exé
T bxEpxpy

Further we describe the calculation of the contact
stress at two cylinders contact. The cylinder mate-
rial is steel. For other materials the calculation is the
same, only the material constants are different.

From the chapter 4 we know the reduced modulus
of elasticity of the contact bodies (steel + steel):

E, =226 000 MPa

The sum of main planes flexion radiuses we deter-

mine according to the equation.

Omax :1'28 (21)

(22)

When we introduce the equation (22) in the equa-
tion (17), we get the equation for the contact plane
width calculation.

5o 8 F 5 8 F
= —_— = —X
T bxEg xpy I d

1+—

bx226000x2 x

d

(23)
After a simple adaptation we get the equation for
the contact plane width calculation.

The symbol +/— determines the concave and con-
vexe contact.

When we introduce the equation (24) derived by
us into the equation (21) we get the relation of the
maximum contact tress at the two steel cylinder
contact.

F (25)

o, =128
bx4.74x107°

After a simple adaptation we get
F d
1+—
bxd D

Contact pressures cone-cone

o =270 (26)

At the calculation of cone-cone contact pressure
the two-dimensional line contact originates. The
calculation is the same as at the contact cylinder-
cylinder, but the initial equation (26) is multiplied by
a constant of the contact pressure K resultant posi-
tion. This constant is described by several authors
in special literature (FROHLICH 1980) presents the
value K = 0.33.

Further this constant is described by e.g. Berndt,
Bochman, Foppel, Palmgren, Lundberg, Klaptrod,
Faires and others.

Equations derived by formerly mentioned authors
are mostly functions determined from complete el-
liptic integrals (Tripp 1985). Using these integral for-
mulas the constant result is approximately K = 0.3.

In practice the calculation according to Frohlich
is suitable.

r d
O = 270K | 7 1% & =270 07
033 | 1:9 _go1 |- 1.4

+ — = + —
e Ixd D Nixd T D

When we express the force F we get the formula
(27).
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]2 Ixd
45
1+—

D

1-d Ixd( o, )
) o7 %
(5]

o
7938 81

o
F=( ()’
89.1 (28)

1+—
D

where:

/ d
A=,1+—.
D

When we express the force F from the former for-
mula, we get the equation for the maximum contact
force at the contact cone-cone.

Ixd( 0 ) (29)
F=277——| —
E A

Pitting

In the former chapter we derived the equations
for the contact surface size and for the course of
contact pressures distribution. From practical stress
measurements of two cylindrical bodies contact the
course of stress distribution in the body sections
near the contact surface was determined. If we shall
speculate about the bodies relative motion (what is
the typical example of the friction drive), except the
contact pressure the very high friction force will act
in the contact surface (KRAUSE & DEMIRCI 1975).

In the contact place in the middle of the contact
length b three normal pressure stresses o, 0, 0,
act on the elementary joist. The stress o and o, are
equal 0,=0, =P .0 while in the x direction the pres-
sure stress is only halfo_=0.5p _ (Figure 6). When
we plot these stresses in the Mohr’s circle, we get the

overview about the stress distribution in the given
element sections (Figure 6). It is evident that the
maximum shear stress in the middle of the contact
surface is in the planes which are diverted from the
axis y or if need be z direction of an angle y = 4.5°
anditsvalueist_=t_=05(p, -0C)

If we effect the section through the body in the
plane parallel with the contact surface in alow depth
under the contact surface, the normal stresses will
be according to the increase of the section plane mi-
nor and of course different (Figure 7) from the state
stress. The representation using Mohr’s circles for
triaxial state of stress gives us again the graphic view
of the stress distribution in the element (Figure 8)
(FAIRES 1955; KRAUSE & JUHE 1977).

If we plot single normal stresses in the sections
parallel to the contact surface in various distance
from the contact surface we get the graphically
relation between the stress and the depth of cut
(Figure 7). From here derived shear stresses T, =
(o, - cy)/z, 1 _=(0,-0)/2, T, = (o, — 0,)/2, which
act in the planes diverted of 45° f%,om the planes
given by the axes yz, xz, xy are graphically presented
in Figure 8.

From the shear stresses distribution can be seen
that the maximum shear stress value 7 appears in
the depth of cut near to (0.35-0.40)b. Ifywe combine
vectorial the shear stress 7 _and the shear stress 7,
which is needed for the shear friction force block-
ing in the contact surface, we get very high result-
ing shear stresses in the planes a and S, which are
diverted from the plane given by the directions xy
of the angle « (Figure 8).

Material crystals near the middle of the contact
surface are largely stressed by volume compression,
which evokes their partial plastic deformation. In

AR NP

. b
b_ —
/ -LTJ
/ Hos
n ~4
7 Ho
Tz -0

w1

p 08 05 05 02 0 k. 08 0 0ié Q7 o
Mo

158 Figure 7. Stress distribution on elementary

joists in the z — axis section in the depth

1.5b under the contact surface
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the limiting depth of about 0.35 b the influence of
the high resultant shear stress begins to predomi-
nate, so that near the contact surface the complex
of pressed crystals can be cut off from the cylinder
surface under the angle  (Figure 8). The whole effect
of excessive compression of the crystal complex and
their subsequent cut off from the surface is called as
pitting (KRAL 2002).

CONCLUSIONS

The operation of friction drives is influenced by a
great number of operating factors. Bearing stress,
slippage, heating-up and wear.

Factors which influence the bearing stress are
following: friction bodies’ material, contact stress,
contact bodies moving, medium of the contact proc-
ess and the general environs of the contact.

The fact that these factors affect one another
(slippage against temperature, temperature against
material etc.) shows the whole problem complex
of the friction origin and thus the origin of contact
stresses in friction drives.

It is very clear from the variety of affected factors
that the friction force or contact pressures value
cannot be calculated according to simple basic equa-
tions and rules (KRAUSE & DEMIRCI 1975).

For the bearing stress i.e. contact pressures value
calculation the Hertz’s equations are used. Heinrich
Hertz derived the basic equations which depend on
the input coefficients, which depend on the sizes
and dimensions of contact bodies. In next years
these coeflicients were presented by various authors
either using the tables of dimensional coefficients
(FROHLICH 1980) or using the calculation of total
elliptic integrals (Triprp 1985). During the time
various equations have come into being which were
derived from the combination of the basic Hertz’s
and the empirical equations.

The relations determined in this paper are derived
more simply, but in our opinion they are suitable for
usual machine industry and applications in friction
drives.
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Figure 8. Stress distribution in the

section parallel to the contact sur-

T ! face in the depth of 0.35b under the

- contact surface
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In design practice the contact stresses calculation is
always the combination of theoretical Hertz’s equa-
tions and coefficients or empirical relations, which
were determined and tested by along-standing oper-
ation of machines. E.g. for the calculation of contact
stress of two teeth of involutes gearing a very detailed
elaborated design procedure exists, which is long-
termed tested and gives very accurate results (SVEC
1999; KrRAL 2002; BOLEK & KOCHMAN 1989).

If we do not take into account the influence of
real factors which affect the contact stressed value
the calculated contact stress can be different from
real stress up to 50% (KLappTROT 1980). Namely
the Hertz’s equations for contact stress are derived
from 3D analysis, but most of input information
for these equations are determined using the 2D
analysis. Next disadvantage of these equations is the
fact that they do not respect the contact surfaces
roughness and the premise that the stress peaks
point at the middle of contact surfaces (JAGODNIK
& MUFTU 2003).

At friction drives the influence of contact bodies
moving exists, too. From the basic condition of the
friction drive it follows that in the contact surface
except the contact pressure a very high friction force
acts (KRAUSE & JUHE 1977).

On the basis of Hertz’s equations the equations
and methods for calculation of unelastic contact
of two bodies were determined. The equations of
contact state at unelastic contact speculate about
energy lost at reciprocal deformation of two bodies
(GUGAN 2000).

Today the procedures and methods of contact
pressures calculation of nonmetallic bodies (glass,
granite) and at contact in different medium (water,
oil, etc.) exist, too. These equations were again
derived using the original Heinrich Hertz’s theory
(FRANCO & BaTZOGLOU 2002).

On the basis of theoretical Hertz’s equations for
contact pressures calculation a great number of
calculation and application techniques exist. They
are determined for various branches of science,
from biomedicine, e.g. calculation of contact pres-
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sures at hip joints, contact pressures between track
and wheel at rail transport, in terramechanic, i.e.
analysis of tyre contact with soil, tribology — calcula-
tion of lubricating layer load capacity to the known
engineering applications, e.g. calculation of bearings
and gear wheels.

By its theoretical equations Heinrich Hertz makes
possible the development of more detailed and exact
calculation and analyses of single design problems.
On basic of its theories the new modern methods
continuous arise from various branches of human
research. These analyses are derived only analyti-
cally using empirical data and serve as the basis for
the problems solution on the FEM basis.
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HERAK D., CHOTEBORSKY R., SEDLACEK A., JANCA E. (2006): Vyuziti Hertzovych kontaktnich tlaka v tifecich

prevodech. Res. Agr. Eng., 52: 107-114.

Clének je zaméfen na aplikace rovnic popisujicich velikosti Hertzovych kontaktnich tlaki vznikajicich v tfecich pre-

vodech. V ¢lanku jsou odvozeny zjednodusené rovnice vhodné pro vypocet kontaktnich napéti vznikajicich v tfecich

prevodech pri styku koule — koule, vilec — vélec, kuzel — kuzel a jejich grafické znazornéni rozlozeni napéti v kon-

taktni plosce. Pomoci Hertzovych kontaktnich tlaki a aplikaci Mohrovych kruznic je v ¢lanku odvozena podstata

vzniku pittingu a jsou zobrazeny priibéhy napéti na elementarnich hranolcich, lezicich na ose z v fezech vedenych

pod kontaktni ploskou.
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