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Abstract: The paper researches the possibilities to replace the parallel flow hydraulic mechanisms in agricultural 
machinery with hydraulic units with fluid alternating flow as they provide more efficient operation due to their out-
put alternating motion. The method being presented analyses how the geometric displacement volume in the fluid 
alternating piston converter is created. This is basically achieved by adding or omitting elements in the phase which 
consequently reduces the quantity of converter types being manufactured.
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Extensive employment of hydrostatic mechanisms 
goes hand in hand with increasing demands on 
hydrostatic converters and introducing their most 
advanced designs into respective fields of industry. 
Apart from conventional parallel flow hydraulic 
sets, units with the alternating fluid flow proved 
their significance in the practice. In conventional 
parallel flow sets, the fluid flows in the line between 
the hydraulic pump and the hydraulic motor in one 
direction. On the other hand, the operating fluid 
makes a reverse motion in mechanisms with the al-
ternating flow. It means that both flow and pressure 
are periodical in its stabilized condition (Tkáč et 
al. 2004; Koreisová 2005). Since the motion of the 
converter’s active element (e.g. piston) is harmonic, 
so is the flow behavior in the phase.

Despite the fact that there are several kinds of 
mechanisms with fluid alternating flow as for the 
number of phases (lines), extensive application of 
two-phase units with fluid alternating flow (FAF) 
is expected. Two-phase mechanisms with the fluid 
alternating flow have been widely spread and used 
in agriculture, shipping and handling industry, civil 
engineering, mining etc. Thus, they can be used 
in any equipment requiring alternating harmonic 
motion (Jurčo 1997). Some features that make 
them so distinct from conventional cam or crank 
units include easy to follow installation and simple 
overload protection.

The paper presents the method creating geometric 
displacement volume in the piston converter phase 
with the fluid alternating flow and its subsequent 
flow in the phase.

MATERIAL AND METHODS

A various number of elements can be used to 
create a phase in a two-phase rotary converter. Let 
us have an axial piston swash plate type hydrostatic 
pump having four elements (pistons) in a phase 
(Figure 1). The aforementioned elements are ar-
ranged at a specific α angle alongside the pitch 
circle in a regular manner. If rationalized this ar-
rangement may, however, be irregular. This is for 
example when the hydraulic motor necessitates 
the non-sine flow in the course of the technologi-
cal process. It has to be provided though that the 
geometric displacement volumes during phases 
share the same angle of rotation φ. If the geometric 
displacement volumes differ in phases, then it must 
be true, that the geometric displacement volumes 
of the hydraulic pump and hydraulic motor phases 
can be expressed by the formula VG1 = VM1 and VB2 
= VM2 (Nevrlý 2005).

The phase can differ in the number of elements. 
Figure 2 shows axial piston converters having one to 
eight elements in the phase. All the pistons are in-
terconnected in one phase. Geometric displacement 
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volume in one phase can also be made by omitting 
some elements.

Let us assume that the first piston starts moving 
at the bottom dead point. Then, the ith piston stroke 
can be obtained from the following formula (Turza 
et al. 2005; Lahučký 2005):

xpi = hp × [1 – cos(φ –αi)]	  (1)

where:
hp	 – ith piston stroke from one dead point to the other

hpi =2 × rB × tan(γ)	  (2)

φ is the shaft tilt angle from the bottom dead point 
DU of the piston at the constant angular speed of 
the shaft ωB

φ = ωB × t = 2π × n × t	  (3)

where:
γ	 – swash plate axial deflection,
rB	 – radius of the circle of the cylinder block,
t	 – time,

ωB, n	 – angular speed and shaft speed,
αi	 – angle of the ith piston to the first one in the phase 

having in total i = z number of pistons in a phase.

As shown by Eq. (1), the motion is harmonic. 
When differentiating Eq. (1), we will obtain the 
gradual velocity of the ith piston.

vpi = 
dxpi = vp0 × sin (φ –αi)	  (4) 

         dt

where a piston maximum velocity (velocity amplitude) is

vp0 = ωB
2 × rB	  (5)

Flow by one ith piston motion can be expressed 
by the formula

Qpi = Sp × vpi	  (6)

where the piston cross-section is

Sp = π × rp
2	  (7)

where rp means piston radius.

This requires identical both cross-section of all 
pistons and single piston flow behavior, however, 
the phase is shifted by α value.

In case z pistons are arranged in a phase alongside 
the pitch circle in a regular manner, rB denoting its 
radius, then the angle of the ith piston to the first 
one is

αi = (i – 1) × π/z	  (8)

By Eq. (6), the flow from z pistons in the phase will 
be

Q = Sp × 
z

∑vpi	  (9) 
             i=1

The sum of all velocities by Eq. (9) and using Eq. 
(4) will be

Figure 1. Axial piston swash plate type hydraulic pump 
having one phase consisting of four elements (pistons); 
HU – Top Dead Centre, DU – Bottom Dead Centre, 
n – speed, γ – swash plate axial deflection, rp – piston 
radius, rB – pitch circle radius of the cylinder bloc, Q1,2 
-flow in the phase 1,2

Figure 2. Axial piston converters, a phase 
consisting of one to eight elements, 
z – number of elements; Q1,2 – flow in 
the phase
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z
∑ vpi = vp0 × 

z
∑sin(φ –αi) 	  (10) 

i=1                         i=1	

Let us use the following formula to calculate the 
flow in the phase having z = 4 pistons in a phase. 
Then, the sum on the right-hand side in Eq. (10) will 
take the form
4
∑ sin(φ –αi) = sin(φ) + sin(π/4) + sin(π/2) + sin(3π/4) 	 (11) 
i=1        	

Let us use the familiar equation for the sum of 
angles

sin(φ –αi) = sin(φ) × cos(αi) – cos(φ) × sin(αi)	  (12)

After substituting Eq. (12) to Eq. (11) and subse-
quent modification, we get
4
∑ sin(φ –αi) = sin(φ) – (1 + √2) × cos(φ) 	  (13) 
i=1        	

An extreme value will be obtained for Eq. (13), if 
derivation according φ makes 0. Thus, we get

 d  [sin(φ) – (1 + √2) × cos(φ)] = cos(φm) + (1 + √2) × sin(φm) 
dφ	  (14)

where φ = φm is the shaft tilt angle reaching the maximum 
flow.

By modified Eq. (14), we obtain

a tan(φm) = – (1 + √2) 	  (15)

By Eq. (15), we obtain the value of the shaft tilt 
angle providing the maximum flow

φm = 7/8π = 157.5°	  (16)

When substituting the value φm from Eq. (16) that 
makes an extreme value of the function in Eq. (13), 
an extreme value of the function can be obtained. 
It is actually the amplitude of the resulting flow 
behavior (resulting velocity)

AQ = sin(φm) – (1 + √2) × cos(φm) = sin(7π/8) – (1 + √2) × 
cos(7π/8) = 2.61312593	  (17)

Provided that the function by Eq. (13) makes 
zero,

sin(φ) – (1 + √2) × cos(φ) = 0	  (18)

we can calculate the first angle value φ = β accord-
ing to the sequence expressing the phase shift of the 
resulting flow in the phase

tan(β) = (1 + √2) ⇒β = 3/8π = 67.5°	   (19)

Then, the resulting flow behavior according to Eq. 
(9) takes the form of 

Q = Sp × vp0 × AQ × sin (φ –β)	  (20)

Figure 3 shows the unit flow behavior for indi-
vidual pistons having z = 4 pistons in the phase as 
well as for individual angles. Unit flow behaviors are 
obtained from the modified relations in Eq. (6) and 
(20) taking the form of

Qi* =   
 Qpi     = sin(φ –αi) = sin(φ – i – 1  × π)	  (21) 

        Sp × vp0                                 4

and

Q* =    
 Q     = AQ × sin (φ –β) = 2.61312593 × sin(φ – 3  × π) 

        Sp × vp0                                                       8	 (22)

If we make the relations for z pistons general, fol-
lowing will be obtained for the two-phase mecha-
nism:
angle for pistons in the phase

α = π/z	  (23)

ith piston angle to the bottom dead point

αi = (i – 1) × π/z	  (24)

Table 1. Parameters for various number of elements in the cylinder block in an axial piston converter

Variable
Number of elements in the z phase 

1 2 3 4 5 6 7 8

Amplitude AQ 1.0 20.5 

1.414214 2.0 2.613126 3.236068 3.83637 4.493952 5.342228

α = π/z π
180°

π/2
90°

π/3
60°

π/4
45°

π/5
36°

π/6
30°

π/7
25.7143°

π/8
22.5°

β = [(z – 1)/ 2z] ×π 0
0°

π/4
45°

π/3
60°

3∙π/8
67.5°

2∙π/5
72°

5π/12
75°

3∙π/7
77.143°

7∙π/16
78.75°

φm = [(2z – 1)/ 2z] ×π 0
0°

3∙π/4
135°

5∙π/6
150°

7∙π/8
157.5°

9∙π/10
162°

11∙π/12
165°

13∙π/14
167.143°

15∙π/16
168.79°
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phase shift of the resulting phase flow

β = z – 1 ×π	  (25) 
        2z

maximum flow amplitude will be calculated as afore-
mentioned (Table 1 provides figures for as many as 
8 pistons),
angle at which the maximum value of the resulting 
flow in the phase is reached

φm = 2z – 1 ×π	  (26) 
           2z

single element flow behavior in the phase derived 
from Eq. (6)

Qpi = Sp × vp0 × sin(φ – αi)	  (27)

flow behavior in the phase derived from Eq. (9)

Q = Sp × vp0 × AQ × sin(φ – β)	  (28)

that corresponds with Eq. (20).

We will use the following formula to calculate the 
resulting flow amplitude

AQ = 
z
∑ sin   2z – 2i + 1 × π 	  (29) 

       i=1               2z     	

RESULTS

Table 1 provides a comprehensive list of angles 
and amplitudes for individual resulting flows having 
z = 1 to z = 8 pistons in the phase.

Figure 4 shows behavior of both the resulting 
flow amplitude in the phase and angles as condi-
tioned by how many elements there are in a phase. 
As shown in the diagram, the amplitude does not 
represent a direct product of the number of ele-
ments in the phase. Let us make an example – for 
z = 3 elements, the amplitude does not make 3, 
but 2. The angles among elements in the α phase, 
the phase shift of the resulting flow in the β phase 
as well as φm angle at which the maximum value of 
the resulting flow with various number of pistons 
in the phase are given.

Figures 5–9 show relative flow behaviors as pro-
vided by individual pistons as well as resulting flows 
in the phase for z = 2, 3, 5, 6, and 7 pistons in the 
phase.

To make comparisons, Figure 10 shows the result-
ing flows for a different number of elements in the 
phase.

Given any number of elements z, it is possible to 
interconnect the opposite elements in phases with 
those being part of a phase to create further combi-
nations with different flow amplitudes.

Figure 3. Behavior of the relative flows for z = 4 elements in the phase; Q* – resulting relative flow , Q*
1 - relative flow 

of the j element, α – flow phase displacement of the j element, β – phase displacement of the resulting flow, φm – angle 
of the resulting glow maximum amplitude

( (
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Let there be two elements (pistons) in the phase as 
shown in Figure 11. It is possible to make four com-
binations if connecting opposite elements in phases 
with those being part of a phase. Combination types 
2 and 3 are equal when considering the amplitude. 
However, the phase shift against the first element 
has been changed. Phase 1 is shifted by angle phase 
compared to combinations 1 and 2. It is a common 
practice to replace the combination type 4 in any 

circuit by shorting the phases by means of a distribu-
tor (Prikkel 2002; Pavlok 2004).

Table 2 shows values of AQ amplitude, β phase shift 
as well as the angle that proves the maximum flow. 
Figure 5 shows behaviors of both individual flows 
and resulting flow consisting of z = 2 number of pis-
tons in the phase. When applying combination No. 
1, flow in the phase will be expressed in terms of

Q1 = Sp × vp0 × AQ1 × sin(φ – β1) = Sp × vp0 × 
1.4142136 × sin(φ – π/4)	  (30)

When applying combination No. 2, the flow in the 
phase will be expressed in terms of

Q2 = Sp × vp0 × AQ2 × sin(φ – β2) = Sp × vp0 × sin(φ)	  (31)

When applying combination No. 3, the flow in the 
phase will be expressed in terms of

Q3 = Sp × vp0 × AQ3 × sin(φ – β3) = Sp × vp0 × sin(φ – π)	 (32) 
                                                                                              2     

and finally, we will apply combination No. 4

Q4 = 0	  (33)

In reality, it is feasible to make two combinations 
of flow sizes based on the maximum flow amplitude. 
It is advisable to opt for combinations No. 1, 2 and 
4 because when switched, the lowest phase shift β 
is obtained. 

Let there be three elements (pistons) in the phase. 
Figure 6 shows the basic behavior of the elements 
flow and the resulting flow in the phase. It is possible 
to make eight combinations if connecting opposite 
elements in phases with those being part of the 
phase. Figure 12 provides a detailed listing of the 
combinations possible. There is one combination 

Figure 4. The amplitude behavior of the relative resulting 
flow and angles taking into account the number of pistons 
in the phase z; AQ – the resulting flow amplitude, α – the 
flow phase displacement of the i element, β – the resulting 
flow phase displacement, φm – maximum amplitude angle 
of the resulting flow

Figure 5. Single piston relative flow behaviors and the 
resulting flow in the phase for z = 2 pistons; Q*j – relative 
flow of the j element, Q* – resulting relative flow

Figure 6. Single piston relative flow behaviors and the 
resulting flow in the phase for z = 3 pistons; Q* – the 
resulting relative flow, Q*j – relative flow of the j element
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No. 1, type A. Combinations No. 2 and 5, type B are 
equal when considering the amplitude. However, 
the phase shift against the first element has been 
changed. There are four combinations No. 3, 4, 6 
and 7, type C. Similarly, they are equal in terms of 
the amplitude. However, the phase shift against the 
first element has been changed. It is usual that the 
combination No. 8, type D is used in any circuit by 
shorting the phases by means of a distributor.

Table 3 shows the values of AQ amplitude, β phase 
shift as well as the angle φm that proves the maxi-
mum flow. When applying combination No. 1, the 
flow in the phase will be expressed in terms of

Q1 = Sp × vp0 × AQ1 × sin(φ – β1) = Sp × vp0 × 2.0 × 
sin(φ – π/3)	  (34)

When applying combination No. 2, the flow in the 
phase will be expressed in terms of

Q2 = Sp × vp0 × AQ2 × sin(φ – β2) = Sp × vp0 × 
1.414214 × sin(φ – π/6)	  (35)

Similarly, the remaining combinations flow in a 
phase will be obtained from the formula

Qj = Sp × vp0 × AQj × sin(φ – βj) 	  (36)

where j denotes the combination number – as shown 
in Table 3. There are three applicable combinations; 
one can be used by shorting the phases. The slight-
est phase shift is attributed to combinations No. 1, 
2, 4 and 8.

Let there be four elements (pistons) in a phase. 
It is possible to make sixteen combinations if con-
necting opposite elements in phases with those 
being part of a phase. Figure 13 lists the combina-
tion types. There is one combination No. 1, type A. 
Combinations No. 2 and 9, type B are equal when 

Figure 7. Single piston relative flow behaviors and the 
resulting flow in the phase for z = 5 pistons; Q* – the resul-
ting relative flow, Q*j – relative flow of the j element

Figure 8. Single piston relative flow behaviors and the 
resulting flow in the phase for z = 6 pistons; Q* – the resul-
ting relative flow, Q*j – relative flow of the j element

Figure 10. Relative flows reached with z = 1 to z = 7 ele-
ments in a phase; Q*z – the resulting relative flow for z 
elements

Figure 9. Single piston relative flow behaviors and the 
resulting flow in the phase for z = 7 pistons; Q* – the resul-
ting relative flow, Q*i – relative flow of the i element
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considering the amplitude. However, the phase shift 
against the first element has been changed. There are 
three combinations No. 4, 10 and 13, type C. There 
are two combinations No. 3 and 5, type D and two 
combinations No. 6 and 11, type E. They are equal 
in terms of the amplitude. However, the phase shift 
against the first element has been changed. There 
are four combinations No. 8, 12, 14 and 15, type F 
having the amplitude of one element and a different 
phase shift. There is one combination No. 7, type G 

having the amplitude lower if compared with the 
amplitude of one element. The combination provides 
a different phase shift against the first element. There 
is one combination No. 16, type H and it is usual to 
be used in any circuit by shorting the phases with 
a distributor

Table 4 shows the values of AQ amplitude, β 
phase shift as well as the angle φm that proves the 
maximum flow having z = 4 pistons. Figure 14 shows 
behavior of individual flows as well as the resulting 

Figure 11. Various combinations of flow amplitude gained by omitting some elements while having z = 2 pistons in 
the phase; 1, 2 – phase 1 elements, 1´, 2´ – phase 2 elements

Table 2. Combinations available for z = 2 pistons in a phase

No. Type
Pistons

Amplitude AQ Phase shift β Angle at maximum φm1 2

1 A 1 1 1.4142136 π/4 = 45° 3∙π/4 = 135°

2 B 1 0 1.0 0.0° π/2 = 90°

3 B 0 1 1.0 π/2 = 90° 2∙π = 180°

4 C 0 0 0.0 0.0° 0.0°

β, φm – in relation to the 1st piston

Figure 12. Various combinations of flow amplitude gained by omitting some elements while having z = 3 pistons in 
the phase; 1–3 – phase 1 elements, 1´–3´ – phase 2 elements
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Figure 13. Various possible combinations of the flow amplitude obtained by omitting some elements while having z = 
4 pistons in the phase; 1–4 – phase 1 elements, 1´–4´ – phase 2 elements

Table 3. Combinations available for z = 3 pistons in a phase

No. Type
Pistons

Amplitude AQ Phase shift β Angle at maximum φm1 2 3

1 A 1 1 1 2.0 π/3 = 60° 5∙π/6 = 150°

2 B 1 1 0 1.732051 π/6 = 30° π/3 = 120°

3 C 1 0 1 1.0 π/3 = 60° 5∙π/6 = 150°

4 C 1 0 0 1.0 0.0° π/2 = 90°

5 B 0 1 1 1.732051 π/2 = 90° π = 180°

6 C 0 1 0 1.0 π/3 = 60° 5∙π/6 = 150°

7 C 0 0 1 1.0 π/3 = 120° 7∙π/8 = 210°

8 D 0 0 0 0.0 0.0° 0.0°

β, φm – in relation to the 1st piston

flow consisting of z = 4 pistons in the phase and 
combinations available. Behavior of the relative flows 
takes the form of

Qpj =     
Q4j	   (37) 

          Sp × vp0

where:
j	 – combination number as shown in Table 4.

It is possible to make eight basic combinations if 
connecting opposite elements in phases with those 
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being part of a phase. They do not share the value 
of the flow amplitude (Figure 15).

Individual combinations flow in the phase is ex-
pressed in terms of

Q4j = Sp × vp0 × AQ4j × sin (sin(φ – β4j)	  (38)

where:
j	 – combination number as shown in Table 4.

Table 4. Combinations available for z = 4 pistons in a phase

No. Type
Pistons

Amplitude AQ Phase shift β Angle at maximum φm1 2 3 4

1 A 1 1 1 1 2.61312593 3∙π/8 = 67.5° 7∙π/8 = 157.5°

2 B 1 1 1 0 2.414213562 π/4 = 45° 4∙π/4 = 135°

3 D 1 1 0 1 1.732050807 atn(20.5) = 54.73561032° 144.73561032°

4 C 1 1 0 0 1.847759065 π/8=22.5° 5∙π/8=112.5°

5 D 1 0 1 1 1.732050807 80.26438968° 170.26438968°

6 E 1 0 1 0 1.414213562 π/4 = 45° 3∙π/4 = 135°

7 G 1 0 0 1 0.765366868 3∙π/8 = 67.5° 7∙π/8 = 157.5°

8 F 1 0 0 0 1.0 0.0° π/2 = 90°

9 B 0 1 1 1 2.414213562 π/2 = 90° π = 180°

10 C 0 1 1 0 1.847759065 3∙π/8 = 67.5° 7∙π/8 = 157.5°

11 E 0 1 0 1 1.414213562 π/2 = 90° π = 180°

12 F 0 1 0 0 1.0 π/4 = 45° 3∙π/4 = 135°

13 C 0 0 1 1 1.847759065 5∙π/8 = 112.5° 9∙π/8 = 202.5°

14 F 0 0 1 0 1.0 π/2 = 90° π = 180°

15 F 0 0 0 1 1.0 3∙π/4 = 135° 5∙π/4 = 225°

16 H 0 0 0 0 0.0 0.0° 0.0°

β, φm – in relation to the 1st piston

Figure 14. Different relative flow amplitude combinations achieved by omitting some elements having z = 4 pistons 
in a phase; Q*j – relative flow of the i element
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As evident (Figure 15), 4 pistons in the phase can 
already form eight basic combinations. Thus, the 
application possibilities of the converter in hand (of 
uniform size) can get extended since a wider range 

of applicable amplitudes is obtained. Combinations 
1A, 2B, 4C, 3D, 6E, 8F, 7G and 16H are arranged in 
a sequence respecting the phase shift, starting with 
the lowest amplitude.

Table 5. Combinations available for z = 5 pistons in the phase

No. Type
Pistons

Amplitude AQ Phase shift value β Angle at maximum φm1 2 3 4 5

1 N 1 1 1 1 1 3.236068 2∙π/5 = 72° 9∙π/10 = 162°

2 M 1 1 1 1 0 3∙π/10 = 54° 4∙π/5 = 144°

3 L 1 1 1 0 1

4 J 1 1 1 0 0 π/5 = 36° 6∙π/5 = 126°

5 K 1 1 0 1 1

6 H 1 1 0 1 0

7 G 1 1 0 0 1

8 C 1 1 0 0 0 π/10 = 18° 3∙π/5 = 108°

9 L 1 0 1 1 1

10 H 1 0 1 1 0

11 I 1 0 1 0 1 2∙π/5 = 72° 9∙π/10 = 162°

12 D 1 0 1 0 0 π/5 = 36° 6∙π/5 = 126°

13 G 1 0 0 1 1

14 E 1 0 0 1 0 3∙π/10 = 54° 4∙π/5 = 144°

15 F 1 0 0 0 1 2∙π/5 = 72° 9∙π/10 = 162°

16 B 1 0 0 0 0 1.0 0∙π = 0° π/2 = 90°

17 M 0 1 1 1 1 π/2 = 90° π = 180°

18 J 0 1 1 1 0 2∙π/5 = 72° 9∙π/10 = 162°

19 H 0 1 1 0 1

20 C 0 1 1 0 0 3∙π/10 = 54° 4∙π/5 = 144°

21 H 0 1 0 1 1

22 D 0 1 0 1 0 2∙π/5 = 72° 9∙π/10 = 162°

23 E 0 1 0 0 1 π/2 = 90° π = 180°

24 B 0 1 0 0 0 1.0 π/5 = 36° 6∙π/5 = 126°

25 J 0 0 1 1 1 3∙π/5 = 108° 11∙π/10 = 198°

26 C 0 0 1 1 0 π/2 = 90° π = 180°

27 D 0 0 1 0 1 3∙π/5 = 108° 11∙π/10 = 198°

28 B 0 0 1 0 0 1.0 2∙π/5 = 72° 9∙π/10 = 162°

29 C 0 0 0 1 1 7∙π/10 = 126° 6∙π/5 = 216°

30 B 0 0 0 1 0 1.0 3∙π/5 = 108° 11∙π/10 = 198°

31 B 0 0 0 0 1 1.0 4∙π/5 = 144° 13∙π/10 = 234°

32 A 0 0 0 0 0 0.0 0.0° 0.0°

β, φm – in relation to the 1st piston
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Figure 15. Basic amplitude flow combinations achieved by omitting some elements having z = 4 pistons in the phase; 
Q*j – relative flow of the i element

Figure 16. Various combinations of flow amplitude achieved by omitting some elements while having z = 5 pistons in 
the phase; 1–5 – phase 1 elements, 1´–5´ – phase 2 elements
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Let there be five elements (pistons) in the phase. 
It is possible to make thirty-two combinations if 
connecting opposite elements in phases with those 
being part of the phase. Table 5 shows some numeric 
values and Figure 16 shows individual combination 
types. The combinations given are assigned fourteen 
basic combinations of the resulting amplitudes A to 
N. The basic combinations extend the application 
possibilities of the five-piston converter in hand by 
forming fourteen differently sized amplitudes.

There may be more to the basic combinations, 
but they have different phase shifts β. It is advis-
able to opt for a combination with a smaller phase 
shift value β. When switching combinations, it is 
advisable to select such a sequence in which the 
neighboring combinations are of smaller phase 
shift value.

There is one combination of A type (amplitude is 
AQ = 0). Its purpose is to prevent the flow to arise 
in the converter phases. Opposite elements are all 
interconnected. This combination is advisable for a 
pump having a stationary motor.

There are five combinations of B type (No. 16, 
24, 28, 30 and 31) with AQ = 1 amplitude per unit. 
For combination No. 16 makes zero phase shift 
value (β = 0), it is advisable to be matched with the 
combination No. 32 to respect the combination 
sequence.

There are four combinations of C type (No. 8, 20, 
26 and 29) having a higher amplitude than A type. 
The slightest phase shift value β = 18° is attributed 
to combination No. 8, therefore it is the next one in 
the sequence of combinations.

There are three combinations of D type (No. 12, 
22 and 27). The slightest phase shift value β = 36° 
is attributed to combination No. 12. It is therefore 
placed next in the sequence of combinations.

Values that were not given are not registered.
This procedure can be applied when selecting basic 

combinations of basic types.

CONCLUSION

The paper presents a method to create geometric 
displacement volume of the piston converter phase 
with the fluid alternating flow. It is basically achieved 
by adding or omitting elements in the phase. Thus, 
various f low amplitude combinations may be 
reached. The resulting flow behaviors show that the 
phase shift β value differs if having a different num-
ber of elements in the phase z, z = 1 excluding. This 
is supported by an analysis in which the additional 
elements in the phase were gradually arranged in the 
left direction from the first element by α angle. The 

relations and behavior types are true supposed that 
the cross-sections of all elements (pistons) in the 
phase are identical and arranged alongside the pitch 
circle of the cylinder block in a regular manner.

The method presented in the paper illustrates 
various possibilities of combining pistons in the 
phase which is instrumental for the manufacturers to 
choose and apply different options for the two-phase 
converters. In addition, it makes the production of 
two-phase converters more efficient. The method 
can be applied to produce converters in various 
industries such as cutter bar drive (Krchnár & 
Stračár 2000; Pavlok 2004), shaking sieves, 
fatigue testing machines, vibrating hammers etc. 
(Turza et al. 2005).
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Abstrakt

Turza J., Tkáč Z., Gullerová M. (2007): Geometrický objem a prietok fáze prevodníka dvojfázového hyd-
raulického mechanizmu. Res. Agr. Eng., 53: 54–66.

Obsah príspevku je zameraný na problematiku možnosti nahradenia hydrostatických pohonov poľnohospodárskych 
strojov s jednosmerným prietokom pracovnej kvapaliny, hydrostatickými pohonmi so striedavým prietokom, ktoré 
umožňujú výhodnejšie riešiť systém pohonu s výstupným striedavým pohybom. Práca sa zaoberá metódou vytvárania 
geometrického objemu fáze piestového prevodníka so striedavým prietokom. Koná sa to pomocou rôzneho počtu 
prvkov vo fáze, alebo vynechaním prvkov vo fáze. Znižuje sa tým počet typov vyrábaných prevodníkov.

Kľúčové slová: geometrický objem; striedavý prietok; dvojfázový mechanizmus
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