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The model of oscillating system with coil and its validation

P. Kočárník, S. Jirků

Department of Mechanics and Materials Science, Faculty of Electrical Engineering,  
Czech Technical University in Prague, Prague, Czech Republic

Abstract: This article demonstrates the solution of a dynamic system with a complex kinematical structure and rolling 
resistance in the Matlab-Simulink program. To validate the simulation, a physical model with an incremental sensor was 
established which allows us to measure the kinematical values while the system is in motion. The article also includes 
the simulation model block diagram and the calculated course of kinematical values. Numeric results were compared 
with the real model. The measurement proved good conformity in basic parameters such as the period time, amplitude 
decrease, stop time etc. Small deviations in the final phase may have been caused by fine unevenness of the plane dur-
ing the experiment.
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Mathematical modelling and simulation of the 
dynamic systems have become an integral part of the 
machinery design and construction. To establish a 
functional and credible simulation model, it is nec-
essary to create an alternative mechanical scheme 
consisting of preferably all features affecting the sys-
tem behaviour, the creation of the motion equation 
system (i.e. mathematical model with the description 
of the active parts as well as passive resistances and 
mechanical structures), and the creation of the com-
puterised simulation model ensuring the solution of 
the mathematical model for the system parameters 
and initial conditions given.

The mathematical model of the system is compiled 
by the equations of motion based on the New-
ton’s second law, d’Alembert’s principle, free body 
methods or second Lagrangian equation (Beer & 
Johnston 1988; Bedford & Fowler 2005). The 
equations of motions are systems of non-linear 
differential equations a suitable instrument for the 
simulation of the mathematical model is e.g. pro-
gram Matlab-Simulink. Samples of the solution of 
different mechanical, hydraulic or thermodynamic 
systems are e.g. in publications (Jirků & Kočárník 
2004, 2005; Jirků &Vondřich 2002; Kočárník & 
Jirků 2006).

The correctness of the methods and procedures used 
should be advisably to be validated by physical models 
scanning the kinematical values and by comparison of 
the simulation results with the values measured.

This article shows the solution of a system with 
complex kinematical structure and rolling resist-
ance. The system is that of a weight and a coil roll-
ing down the inclined plane (Figure 1). It is set in 
motion due to the weight of both system elements. 
Depending on the α fibre angle, the moment of the 
inner force S1 (regarding the cylinder motion pole) 
changes its orientation. The system can thus perform 
muffled periodic motion.

Methods of modelling

The motion equations were derived from the free 
body method. Figure 1 shows the primary forces, 
the reactions in outer as well as inner structures 
and inertia forces, or moments. The rolling resist-
ance is respected by displacing the reaction normal 
element between the cylinder and the plane by the 
rolling resistance arm ξ in the motion direction. The 
change of the arm position is respected by the sgn  ·x   
function. The following motion equations are valid 
for each object:

Weight:

–S2 – m3ÿ + m3g = 0 	  (1)

Pulley:

–S1r2 + S2r2 – I2
·ϕ2 = 0  	  (2)
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Coil on inclined plane:

Rt – m·x – S1 sinα – m1g sinε = 0

Rn – m1g cosε + S1 cosα = 0 	  (3)   

S1r1B – Rtr1A – Rnξ sgn  ·x – I =0

The equations can be completed with kinematical 
relations. The following relation applies to the rolling 
of the cylinder 

 ·x = r1Aωrel = r1A ·φ1 ⇒ 
·ϕ1 = 

 ·x 	  (4) 
                                          

r1A

The relation between the motion velocity of 
the coil  ·x and the weight  ·y can be derived from 
the projection of the P point resultant velocity cP 
(given by the vector sum of drift and relative velocity  
cP = cPdrift + cPrel) to the fibre direction, see Figure 2.

Figure 1. Mechanic scheme of the system

Figure 2. Kinematical structure

cPdrift = ·x, cPrel = r1Aωrel = 
r1B   ·x ⇒ cPα =  ·y = 

                                       
r1A      

        = cPrel – cPdrift sin α = 
 
·x   

r1B – sin α 	 (5)  
                                                

r1A

After derivation of the last relation, we acquire

ÿ = ·x   
r1B

   – sin α  –   ·x  
d(sin α)

 =   

                 

r1A                                  dt
 

    = ·x     
r1B  – sin α  –   ·x2 

d(sin α)
	  (6) 

           

r1A                                        
dx

According to the figure geometry, the following 
relation applies for the angle α

tg α = 
sin α    

=
        x – (r1B – r2) cos α

	  (7) 
          cos α       h –  r1A + (r1B + r2) sin α

which can be adjusted to

α(x) =  arcsin
  x√x2 + (h – r1A)2  – (r1B + r2)2  

– 
                               x

2 + (h – r1A)2 

                      
–

 (h – r1A)(r1B + r1A)	  (8) 
                         x

2 + (h – r1A)2 
         

After the elimination of the reactions and the inner 
forces from Eq. (1) to (3) and the establishment of 
derived kinematical Eq. (6), we obtain the following 
motion equation of the system

Figure 3. Simulation model scheme
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With respect to the complexity of the relation for 
α(x), which is not a function of  ·x, the derivation of 
the sin α function can be performed numerically in 
a simulation model.

Results

Figure 3 shows the model scheme in the Mat-
lab-Simulink program. Figures 4 and 5 show time 
flows of kinematical values for the coil and weight 
motion.

The physical model for the validation of the nu-
merical model is shown in Figure 6 and the detail 
of coil is in Figure 7. The photo of the model is pre-
sented in Figure 8.

The direct measurement of the coil position is 
technically difficult, so an indirect method was 
chosen which compares the weight position during 
the validation of the model characteristics. The x 
coil position must be converted to the y weight posi-
tion in the numerical model using the Eq. (5) with 
subsequent integration. The weight position relates 
to the pulley displacement, which is scanned by an 
incremental sensor.

The determination of the initial conditions value 
for the numerical model is rather complicated, so the 
problem of the coil position measurement cannot 
be avoided. However, the problem can be bypassed 
so that the coil passage through the optical gate is 
scanned in the known position of xopt = x(t = 0). The 

Figure 6. Physical model arrangement
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Figure 4.  Coil distance, velocity and acceleration 
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Figure 5. Weight distance, velocity and acceleration
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          m3g + ·x2  m3 + I2    d(sin α)  
  
r1B   –   sin α  +  ξsgn ·x    cos α   –   m1g  sin ε  +  ξsgn ·x   cos ε 

                                 
r2

2
         dx         r1A                          r1A                                                                    r1A  

    ·x = 	 (9)	
                                       m3 +

 I2     r1B 
– sin α)     
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coil velocity  ·x(t = 0) can be determined in this posi-
tion from the calculation resulting from Eq. (5). The 
required velocity  ·y can be determined from the nu-
merical derivation of the measured position y. The 
physical model parameters (weights, moments of 
inertia, etc.) are set by measuring and weighing, the 
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Figure 7. Detail of coil
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Figure 8. Photo of coil model

Figure 8. Calculated and measured courses of the distance y  and velocity y

unknown values for the ξ arm rolling resistance and 
ε plane inclination are determined from sequential 
optimisation so that the highest conformity of the 
compared courses is achieved (Figure 9).

Conclusion

The measuring demonstrated a good conformity in 
basic parameters, such as the period time, amplitude 
decrease, stop time etc. Small deviations in the final 
phase of the motion were most probably caused by 
fine unevenness of the working plane because the 
task is very sensitive to its inclination.

In the same way, the model was verified of a truck 
(driving moment M, respective supply voltage U of 
motor) with physical pendulum (Figure 9). The sys-
tem has 2 degrees of freedom (case without slipping 
of the driving wheel) or 3 degrees of freedom (case 
with slipping of the driving wheel) the verification of 
accuracy of mathematical models is presented on a 
comparative physical model of this system with elec-
tronic control and scanning of kinematics quantities. 
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The results of simulation shown in the experiment 
correspond to the exciting of the system by the 
moment of the motor drive (supplied with square 
wave voltage). The measured time-dependents of 
the truck position x, truck velocity v =  ·x,  amplitude 

Figure 10. Comparison of measured and computed kinemat-
ical quantities for model of the truck
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Figure 9. Model of the truck

solution of the mathematical model (dashed line) 
are compared in Figure 10. A detailed description 
of this problem is in Vodřich et al. (2001).

The results prove the correctness of the mathemat-
ical description, computer simulation, and adequate 
accuracy of the applied method identification of the 
system parameters.

The system described and checked in the article 
will probably not find direct use in practice. How-
ever, the philosophy of mathematical simulation 
mentioned and the experimental verification of 
dynamic systems are usable in different engineering 
spheres, e.g. in the research, proposal, and construc-
tion of agricultural machines.
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Abstrakt

Kočárník P., Jirků S. (2007): Model kmitajícího systému s cívkou a jeho ověření. Res. Agr. Eng., 53: 182–
187.

Článek je ukázkou řešení dynamické soustavy se složitou kinematickou vazbou a s odporem valení v programu Mat-
lab-Simulink. Pro ověření simulace byl zkonstruován fyzikální model s inkrementálním čidlem, které umožňuje 
snímání a měření kinematických veličin za pohybu soustavy. V příspěvku je uvedeno blokové schéma simulačního 

of pendulum ϕ and angular velocity ω =  ·ϕ with 
corresponding quantities determined by numeric 
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modelu a vypočtené průběhy kinematických veličin. Numerické výsledky jsou porovnány s reálným modelem. Měře-
ní prokazuje dobrou shodu v základních parametrech, jako je doba periody, pokles amplitudy, doba zastavení apod. 
Malé odchylky v konečné fázi pohybu mohou být způsobeny drobnými nerovnostmi základové desky při experimen-
tu. V závěru jsou stručně popsány i výsledky ověření simulace soustavy vozíku s kyvadlem.

Klíčová slova: dynamické soustavy; matematický model; simulace; ověření
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