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Abstract

Cviklovič V., Hrubý D., Olejár M., Lukáč O., 2011. Comparison of numerical integration methods in strap-
down inertial navigation algorithm. Res. Agr. Eng., 57 (Special Issue): S30–S34.

The numerical mathematical theory provides a few ways of numerical integration with different errors. It is necessary 
to make use of the most exact method with respect to the computing power for a majority of microprocessors, because 
errors are integrated within them due to the algorithm. In our contribution, trapezoidal rule and Romberg’s method 
of numerical integration are compared in the velocity calculation algorithm of the strapdown inertial navigation. The 
sample frequency of acceleration and angular velocity measurement was 816.6599 Hz. Inertial navigation velocity was 
compared with precise incremental encoder data. Trapezoidal method velocity error in this example was 1.23 × 10–3 m/s 
in the fifteenth-second measurement. Romberg’s method velocity error was 0.16 × 10–3 m/s for the same input data.
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The utilisation of navigations has recently expanded 
to various scientific and engineering departments. We 
encounter the GPS system support most frequently, 
with it being increasingly available to general public. 
This system is used in such spaces, where the recep-
tion of the satellite signals is possible. However, there 
are some examples when we need to use navigation in 
closed spaces, for instance a storage house, where this 
signal is not available. In such cases, it is possible to 
use the advantages of inertial navigation, which does 
not require any input electric or magnetic signals, be-
cause the information about the position is obtained 
through the acceleration and gyro data from acceler-
ometers and gyroscopes. 

Two basic principles exist of inertial navigation. 
The first principle utilises gimbal suspension with 
a gyroscopically stabilised platform for balancing 
the sensors with predefined reference casing. Some 
advantages of the presented navigation include: 
a lower power strain of the sensor and a simpler 
calculation of the actual position. The navigation 

system without gimbal suspension is placed on a 
surface which is tightly connected to a vehicle (Tit-
terton, Weston 2004). 

We utilise the integrated circuit sensors in this 
principle, which causes inclination towards this 
technology. It concerns a combination of electron-
ics and the 3D mechanical microelements, which 
convert the measured variable into an electrical 
signal. Consequently, this signal is quantified and 
sampled. The digital value is available on the out-
put. The common title for this sensor subgroup is 
micro electro-mechanical systems (MEMS).

Material and m ethods

The most important knowledge by inertial navi-
gation is the acceleration value in a correct period 
(at the exactly defined moment). The acceleration is 
measured in each axis of the 3D Cartesian system. 
The accelerometer axes are consistent with the axes 
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of the relative system by way of illustration. Thus 
we avoid complicated mathematics, which does not 
affect the position determination and the position 
error, if the information from the gyroscope and in-
clinometer are not taken into account. 

In our example of inertial navigation, MEMS 3 
axial inertial sensor ADIS16405BMLZ (Analog 
Devices, Inc., Norwood, USA) with digital output 
was used. Block diagram of the sensor is shown in 
Fig. 1. The capacitance sensors are sensitive parts 
of the accelerometers. In the case of the correctly 
calibrated sensor being in the rest position, the ab-
solute value of the gravity acceleration is available 
at the output (Analog Devices 2009). 
Acceleration is a second-order derivative of trajec-
tory by time. The point position is calculated (can be 
expressed) by the position vector of the mass point:

	 (1)

The position change is then the difference be-
tween the vectors:

	 (2)

where:
r→ – position vector (m)
v→ – velocity vector (m/s)
a→ – acceleration vector (m/s2)
t – time (s)
v0
→ – initial velocity vector (m/s)

It follows that the acquired information on the 
position is set by double integral acceleration, con-
sequently the global position error will integrate in 

time. To minimise these errors, a properly config-
ured Kalman’s filter is used. All but one integrated 
methods bring errors into the calculations. The in-
tegrals for the actual position calculation cannot be 
calculated analytically, neither can they be defined 
by elementary functions. In some cases symbolic 
solutions exist, but this is more demanding than 
the numerical integration (Grewall et al. 2007).

By numerical integration, we may select from two 
basic alternatives. Either the interpolating polyno-
mials are integrated or other integration methods 
are used. The interpolating upper (higher) degree 
polynomials are integrated with a greater error.

To calculate the definite integral of function f (x) 
given by the functional values in the equidistant 
points the Newton-Cotes quadrature formulas are 
most frequently used. The best known applicable for-
mulas are the trapezoidal rule and Simpson’s rule. The 
outstanding feature of the trapezoidal rule is a slow 
convergence of the numerical process at relatively low 
accuracy and high error h2 (Mošová 2003):

	 (3)

where:
	 – derivation of function in interval ba,
RL	 – method error
a, b	 – integral range
n	 – samples quantity in the interval ba,

Simpson’s rule approximates the selected function 
more precisely. The integral value of f (x) is calculat-
ed in the node points. This method is characterised 
by a small error h4. Geometrical interpretation is 
the sum of the areas above triplet of node points 

Fig. 1. Block diagram of the accelerometer 
ADIS16405 (Analog Devices 2009)
RST – device reset, DIO1-4 – digital gen-
eral purpose pins, CLK – synchronisation pulse,  
GND – ground, Vcc – supply voltage, CS – chip 
select, SCLK – communication clock, DIN – data 
input, DOUT – data output
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with the common (collective) threshold point for 
the adjacent parabolas. The error of the calculation 
method is:

	 (4)

The precision of calculation depends on quantize 
step h. This is valid generally, not only for the trap-
ezoidal and Simpson’s rules. The calculations with 
the highest point count (amount) in the range ba,  
are the most exact. Since in this case is it needed 
to calculate the integrate area using algorithm in a 
microcontroller, the Romberg’s method, that uses 
the calculation way of definite integral on the basis 
of trapezoidal rule, shows to be the most efficient 
and the most exact. Romberg showed by means of 
this method that it is possible to utilise the meth-
ods with greater errors for the formulation of more 
precise approximate integral value when using ap-
proximation for equal integration range with vari-
ous partition steps. By combining the result with a 
higher error, the result with a lower error is reached 
(Vicher 2003).

With this method, we approximate first of all the 
integral in the interval a ≤ x ≤ b, that is split into 8N 
parts (N is integer, which is defined by the number of 
nodes) with step h = (b – a)/8N. With the aid of the 
node points f (a + kh), where k = 1, 2, ... , 8N–1, non-
precision approximation is obtained when using Eq. 5. 
According to Eqs 6 and 7, other approximations of 
the integral are calculated, by means of which the step 
value gradually decreases from 8h to h for value T8. 

	
(5)

	 (6)

	 (7)

	 (8)

	 (9)

U and T are rough approximations of the calcu-
lated integral with the error rank h2. Further, the 
more precise approximation using equations is 
sought (Kačeňák 2001):

	 (10)

	 (11)

	 (12)

	 (13)

S and V are more precise approximations with er-
ror h4. Thus the process continues up to calculated 
R, W with error h6 and Q with error h8. Consequent 
approximated value of the calculated integral is 
represented by parameter Q:

	 (14)

The final value Q is the result of the calculations 
whose results are written down into the scheme. As 
the Romberg’s method is in reality the numerical 
calculation of the approximation results for different 
divided interval steps, it is possible to use another 
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approximation instead of the trapezoidal method, 
for example Simpson’s rule. This method is simple 
but very precise. The errors comparison of the indi-
vidual integration methods is showed in Fig. 2.

Results and discussion

Input acceleration and angular velocity data were 
measured for fifteen seconds. The velocity curve 
was optimised to exclude other errors (Fig. 3) and 
it was controlled by autonomous robot, whose navi-
gation was based on incremental encoders. The 
calculations were evaluated by MATLAB applica-
tion (MathWorks Inc., Natick, USA). The sample 
frequency of 816.6599 Hz and the properly selected 
course line of velocity for it enabled to minimise 
the error caused by the content of higher harmonic 
components in the signal (according to the criterion 
of Shannon 1949). The acceleration course meas-
ured by ADIS16405BLMZ is shown on Fig. 4.

This change can be seen also on the final errors in 
their decrease. It is due to the selected type of ap-

proximation. It is not possible to describe the con-
tinuously modifying common phenomenon and 
changes by means of the trapezoidal method. The 
most exact results are obtained if concavity and 
convexity of the course change and when the posi-
tive and negative errors compensate each other. 

Slightly better is the use of Simpson’s rule in the 
Romberg’s method that uses polynomial approxima-
tion, most frequently of the second rank. However, 
this calculation is more complicated because the final 
area can not be calculated from two values only, but 
from several measurements in the selected interval.
The deviation course of the calculated velocity to 
real velocity for the Romberg’s method and the 
trapezoidal approximation refers to the significant 
difference between the methods listed. The use of 
Romberg’s method with trapezoidal approximation 
shows a significantly smaller deviation when com-
pared with trapezoidal rule itself. 

On Fig. 5, the velocity error course is shown. Romb-
erg’s method is caused by the trapezoidal approxima-
tion used. In the time interval between the fourteenth 
and fifteenth seconds the error decreases in Romb-

Fig. 3. Velocity course used for 
our example

Fig. 4. Acceleration course 
used for our example
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erg’s method. The trapezoidal rule is inaccurate for the 
use in the algorithm of strapdown inertial navigation 
systems. The trapezoidal method velocity error was in 
this example 1.23 × 10–3 m/s in the fifteenth-second 
measurement. Romberg’s method velocity error was 
for the same input data 0.16 × 10–3 m/s. 

Conclusion

The application of numerical integration methods 
to inertial navigation demands high attention and 
knowledge of various course specifications of the in-
put values, from which the final integral is calculated. 
These values are the acceleration and time difference 
between the individual samples. Acceleration varies 
continuously, it does not jump. Therefore, it is prefer-
able to use polynomial approximation in connection 
with an appropriate interpolation method. The reason 
resides in more precise description of the real func-
tions by parabolas rather than lines. The intent of time 
belongs to the most exact values measured, therefore 
the projection of the time error is negligible. 

The final actual position is defined by the acceler-
ation calculation onto velocity and the velocity cal-
culation onto trajectory. Acceleration is integrated 
two times together with the error, which accumu-
lates in time. This error can be eliminated by filter-
ing, but cannot be completely removed. Therefore, 
it is needed to pay attention to this problem, which 
should lead to general inertial navigation accuracy 

improvement. Navigation of higher quality may 
find very broad utilisation in the future, for ex-
ample in the storehouses, where danger materials 
(substances) or heavy machine parts are used. 
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Fig. 5. Velocity error course according 
to time
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