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Abstract
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This paper deals with the application of differential geometry methods to a precise calculation of the length of trajec-
tory of an agricultural mechanism that moves on a sloping terrain. We obtained technical exciting function from ex-
perimental measurements, out of which we obtained the function of Euler’s parameters by using computer processing.
The processing of these parameters provided translational and angular velocities of the gravity centre of the systemic
vehicle MT8-222, which performed the determined mounted manoeuvres. We obtained differential equations that
describe the function of a spatial curve by the application of differential geometry methods. The length of the curve is
obtained by a numerical solution of the differential equations formed. We used Dormand-Prince numerical method
for the numerical solution. Next, we evaluated the error of the numerical integration for every calculation by reason
of the stability of computation. We also addressed the geometric characteristics of the curves such as the radius of
curvature. The mounted manoeuvres as well as the corresponding velocities, trajectories, and radiuses of curvature

were processed in a graphic way.
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The analysis, planning, and optimisation of the ve-
hicle trajectory are nowadays intensively examined
problems not only in the field of the agricultural
mechanisms movement in relation to precision agri-
culture but also in the modelling and simulation of the
vehicle motion and in the research into the dynamic
effects on the vehicle. The research into the trajectory
of the vehicle motion focuses also on the fields of de-
velopment and design of the set mechanisms capable
of autonomous decision and generation of the trajec-
tory according to the input values from the sensors.
Such a design is preceded by a simulation process
which is based on differential moving equations of a
rigid body as well as of a system of rigid bodies. Euler’s
parameters are used for the spatial dislocation of the
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vehicle and spatial transformation based on orthogo-
nal matrices as well as the principles of differential
geometry. To define the tire — ground relationship,
the principles of terramechanics are advantageously
used. An intensive research is realised also in the
fields of the analysis of the vehicle trajectory in differ-
ent reference coordinate axes, when the dynamics of
transport is investigated as introduced in Punzo et al.
(2011). They point out the possibility of obtaining the
exact vehicle trajectory with the help of GPS or using
the simulation programme NGSIM (Next Generation
SIMulation; Federal Highway Administration, Wash-
ington DC, USA). It is possible to obtain precise val-
ues of the trajectory length by utilisation of GPS data,
but a high risk exists of the loss of signal in mountain-
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ous areas. PURWIN and D’ANDREA (2006) dealt with
the generation and planning of the vehicle trajectory
to provide its exact motion and minimise its trajec-
tory to the accurately specified destination. The anal-
ysis of the stability of motion and the compliance of
the specified trajectory of the vehicle motion are pro-
cessed in the works of AILOoNA et al. (2005) and YooN
et al. (2009). YooN et al. (2009) designed a dynamic
model for the generation of the vehicle trajectory fol-
lowing the properties of the terrain and dislocation of
a terrain barrier where there it is not possible to pass
through it. ANTOS and AMBROSsIO (2004) presented
strategies of the control of vehicle motion pursuant
to the dynamics of rigid bodies. They realised simu-
lations in the environment of the program Matlab®
(MathWorks, Natick, USA). For spatial transforma-
tions, Euler’s parameters were used advantageously.
The result was the design of a driver which is able to
provide vehicle motion according to the trajectory
generated before. Under the authority of the differen-
tial geometry, model and real trajectories were evalu-
ated. Almost in every work, the trajectory was gener-
ated by dynamic equations that had been generalised
by PACEJKA (2005).

MATERIAL AND METHODS

The length of the curve. SALAT (1981) as well
as Ivan (1989) describes the length of the curve by
means of differential geometry in the identical way.
Parameterisation of the curve is addressed also by
AGosTON (2005).

Let K be a curve, which is defined by para-
meterisation:

r=r(t); t e<a, B> (1)

where:

r - denomination of function for parameterisation
r(t) - parameterisation of curve K in point ¢

a, B — initial and end point of the curve

Denote R(a) = A, R(B) = B. The point A is the
original point and point B is the final one of the
curve K when its orientation is induced by param-
eterisation. Let D = {to, £y by s tr}, where o < £, <
£, <t,..<t =P isacertain division of the interval
<, B>.

where:
R(a) — parameterisation of curve K in point «
R(B) - parameterisation of curve K in point 3

D - set of points, which divides interval <a, f> into
r-divisions
t,~t —r-divisions of interval <a, >

Denote M, = R(t), for i = 0, 1, 2, ..., r. Points
MM, ..., M, follow gradually one after another in
the orientation of the curve accordant with param-
eterisation (1), thus:

A=M <M <M,<..<M =B (2)

These points divide the curve K into r par-
tial curves (arcs) Mmi. We substitute each
of them by an abscissa (subtense) M, M. We
denote the broken line consisting of abscissas
M, M. (i=1,2,..,r)as K(D). We say that the bro-
ken line K(D) is inscribed into the curve K.

Let’s (D) denote the length of the broken line
K(D). Hence:

r

SD) = ) d(Myy, M) = ) [r(ed) = (6| 3)
i=1 i=1
where:

d — length of the partial curves

It can happen (if the curve is not simple) that the
point M, | is identical with the point M, for some i.
In this case, it holds that d(M, |, M) = 0.

Using the foregoing way, every division D of the
interval <a, B> is assigned a positive number s(D),
which presents the length of the corresponding in-
scribed break line K(D). To every sequence {Dn} of the
division of the interval <a, B> appertains the sequence
of number {s(D))}. It is evident that, if there exists
anumber, that d(D ) < s for every division D _and the
lower the difference d(D ) < s the smoother the divi-
sion D, then the non-negative number s is called the
length of the curve K. We establish a definition:

If the corresponding sequence {s, D } for every
regular sequence {D } of the division of the inter-
val <a, B> is convergent and the limit does not de-
pend on the selection of sequence {D }, we say that
the curve K is rectifiable and we name the number
s = lim s(D,,) its length.

Ac%g%ding to this definition and knowledge of
the transformation of the parameter of the curve,
it can be relatively easy to prove that the length of
the curve does not depend on its parameterisation.
From the geometric point of view, it is an obvious
requirement for the definition of the curve length.

From the definition of the curve length and theo-
rems about the limit of numeric sequence follows
the veracity of the next theorem.
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Theorem 1 (monotony property)

If the curve K is rectifiable and its length is s, then
its each part K is rectifiable too and for its length
s"holds: s <5

By the help of this theorem, the theorem about
other important property of the curve length (ad-
ditive property) can be proved.

Theorem 2 (additive property)

(a) If the curve K is rectifiable, then for its optional
division into the final number of partial curves

K, K, .., K each from parts K, is rectifiable
and it holds:
S=S 4S8, + .+ .S, (4)
where:

s — length of the curve K
s, — length of its parts K, i = 1,2, ... n

(b) The curve K, which is the connection of the fi-
nal number of rectifiable curves K1’ 1(2, ey Kn,
is also rectifiable and for its length s holds the
equality (4).

The following theorem speaks out about a suffi-
cient condition of the curve rectifiability.

Theorem 3

Let r = r(t), t € <a, p> be parameterisation of the
curve K. If the function r has a continuous deriva-
tive r'in the interval <a, B> (in the point A from the

right, in the point B from the left), then the curve K

is rectifiable and for its length s holds:

B
N LAG) )
that is:
_ f \/[dx(t) [dy(t) [dz(t)] dt ©)
if r(g) = x(0)i + y(1)j + z()k (7)
where:

i, j, k — unity vectors
x, 9, z — coordinates

This corollary follows from the definition of the
regular and partly regular curves and from theo-
rems 2 and 3.

When we utilise the parameterisation of the
curve K, we obtain a flexion of the curve. For the
regular curve K holds that for every point the flex-
ion equals:

w =" (OF + [y" (O] + [z (D)]? (8)
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Using Eq. (7) and its first and second derivation
leads to the relation for the curvature of the curve.
We establish determinants A, B, C as:

! !

Z )

4 n

z", x

! !
Yy, z

A= " IIPB=
Yy, z

,c=|’f: y,,| ©)
X, y

For the curvature in every point of the curve K
then holds:

~ VAZFBZ T (2
VIG®D? + (v (0))? + (D)2

From the preceding relations we can define the
radius of curvature as the reciprocal of the curva-
ture:

1 (11)

P=x

Numerical integration. In the created applica-
tion, the numerical method is implemented for
integration of Runge-Kutta methods, especially
Dormand-Prince method. This method is ana-
lysed in the paper of its authors DORMAND and
PrINCE (1980). They presented this method thanks
to Butcher’s table, in which the coefficients of the
individual terms in the equations are described.
Butcher’s table was used also by HOPPENSTEADT
(2007). The equations for Dormand-Prince method
have the following forms:

kl = hnf('xn’ yn)

(10)

1 1
k,=h +=h,y,+-k
2 nf(xn 5 n yn 5 1)

X, +— +—k+9kj
40 40

56 32
—k2 + ?k:;)

=i
hnf[x oy + s - 58
(5

19 372 25, 360/ 64,448

=h ) k, -
K Hr 6561 10,187 K 6,561 °
212
h)
729
9,0 355 46,732
kﬁ:h”f(x”h”’y” 3,168 ' 33 > 5247 ks
’ (12)
, 492 5,103
4 /5
176 18,656
500 125
=h +h, . kv —k, —
”f(x” Yt 3ge T 13 192

2187 11
- ks+_ 6
6,784 ° ' 84 )
Cy 422 500, (125, 2187, 11,
Tun = It e T 1370 T 190 T 6784 0 T gae
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where: The quaternion kinematic differential equations
k,—k, — Runge-Kutta koefficients are given by:
h, — step of the numerical integration '
¥, Y,,, —the value in the points x , x| 1 0 w3 —Wy 1] [ds

dz2| _ 1l-ws 0 w; w2][92 (17)

Quaternion feedback control. WiE (2008) con- RE 2| Wz T 0 wsfds
ds -w; —w; —wz 01194

siders the attitude dynamics of a rigid vehicle de-
scribed by Euler’s rotational equation of the motion:

Jo + o xJo=u (13)

where:

J — inertia matrix

0 = (0, 0, »,) —angular velocity vector

u = (u,u, u,) - control torque input vector

The cross product of two vectors is represented
in the matrix notation as

0 _0)3 (1)2 hl
w5 0 —mll [hzl

_(Dz (‘01 0 h3

wXxXh=

where:
h = Jo — angular momentum vector

It is assumed that the angular velocity vector
components o, along the body/fixed control axes
are measured by rate gyros.

Euler’s rotational theorem states that the rigid
body attitude can be changed from any given orien-
tation to any other orientation by rotating the body
around an axis, called the Euler axis, which is fixed
to the rigid body and is stationary in inertial space.
Such a rigid body rotation around the Euler axis is
often called the eigenaxis rotation.

Let a unit vector along the Euler axis be denoted by
e= (el, e, eB), where e,e, and e,are direction cosines
of the Euler axis relative to either an inertial reference
frame or the body — fixed control axes. The four ele-
ments of quaternions (q,—q,) are then defined as:

q, = e,sin(8/2)
q, = €,sin(8/2)
q, = e3sin(6/2)
q, = cos(6/2)

where:
0 - denotes the rotation angle around the Euler axis

and we have:

CHrO+q+qi=1 (16)

Like the Euler-axis vector e = (el, e, e2), defining
a quaternion vector q = (q;, q,, q,) as:

q = esin(6/2) (18)
we rewrite Eq. (17) as
2q=qo-wxq
24 = —w'q (19)
where:
(20)

0 _(1)3 (1)2 ql
wXq=| w3 0 —wq|]92
—W, W 0 1093

Because quaternions are well-suited for on-board
real-time computation, the vehicle orientation is
nowadays commonly described in terms of qua-
ternions, and a linear state feedback controller of
the following form can be considered for real-time
implementation:

u=-Kqe — Co (21)

where q, = (q,,, q,,, q,,) is the attitude error quater-
nion vector and K and C are controller gain matri-
ces to be properly determined. The attitude error
quaternions (q,, q, 9s, q,,) are computed using
the desired or commanded attitude quaternions
(4, 950 930 9,.) and the current attitude quaterni-
ons (q,, 9, q; q,) as follows:

die Qac qQ3c —d2¢  —9ic] [
Q2e| _ | 793¢ Ya4c dic  —Yac| |92
ze| | d2c  —91c  9ac  —dzc||93 (22)

Q4e d1c qQ2c Ad3c Qac 1194

If the commanded attitude quaternion vector is
simply the origin defined as

(qlc’ q2c’ q3c’ q4c) = (0’ O’ 0’ +1) (23)
then the control logic (21) becomes:
u=-Kq-Co (24)

On the other hand, if the origin is chosen as (0, 0,
0, —1), then the control logic (21) becomes:

u=+Kq- Co (25)
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Fig. 1. Translational velocities of the centre of gravity: (a) Manoeuvre 1, (b) Manoeuvre 2, (c) Manoeuvre 3, (d) Manoeuvre 4

Vx, Vy, Vz — velocities in the direction of x, y, z axis, respectively

Agricultural machine and determination of
manoeuvres. The agricultural machine used in
these experiments was the systemic vehicle MT8-
222 (ZTS Obchodny podnik, Slovenska Lupca, Slo-
vak Republic) that is designated for working on the
sloping terrain. The design of this machine is ad-
dressed by PALTIK et al. (2007). The average value of
the slope gradient was 30—33 degrees. Experimen-
tal measurements were done from which we got the
functions of the acceleration of the centre of gravity.
When we processed these functions with a comput-
er, we obtained Euler’s parameters. The processing
of these parameters yielded the translational and
angular velocities of the centre of gravity of the sys-
temic vehicle MT8-222, which performed the deter-
mined mounted manoeuvres. The moments of iner-
tia of the vehicle with respect to the x, y, z axes were
], = 240 kg.m?, J,=520 kg.m? and J_ = 950 kg.m? The
weight of the vehicle was 1.356 kg.

Four different manoeuvres were executed:

Manoeuvre 1: moving on the slope along the down-
grade slope with braking.

Manoeuvre 2: moving on the slope along the down-
grade slope with turning to the down-grade slope.
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Manoeuvre 3: moving on the slope along the
hillside with turning to the hillside.

Manoeuvre 4: moving on the slope along the
down-grade slope with 45 degree yaw angle with
turning to the down-grade slope.

The real trajectories executed during the ma-
noeuvres are shown below. We assume that all of
the discreet functions used by us were in the given
interval <0, >, where ¢ is the time of the manoeuvre
execution, continuous. We suppose the existence
of the position vector of the vehicle centre of grav-
ity towards the origin of inertial coordinate system
in every instant of time. During the manoeuvres
execution, there was no overturn of the vehicle.

We respected the standard SAE J670 200801 (1976)
as for the terminology of the vehicle dynamics.

RESULTS AND DISCUSSION

We recommend for use in practice that curves,
obtained by this approach, were approximate by
polynomial functions owing to the achievement
of better smoothness of the function continuance,
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Fig. 2. Vehicle manoeuvres: (a) Manoeuvre 1; (b) Manoeuvre 2; (c) Manoeuvre 3; (d) Manoeuvre 4

whereas our functions have a stochastic character.
The algorithm we formed uses also characteristic
parameters of the curve such as flexion, torsion,
and curvature, but their exposure would surpass
the size of this contribution. That is why we pres-
ent only the radius of curvature p. We substitute
the values of translational accelerations, velocities,
and the dislocations of the centre of gravity into the
corresponding parameters in Eqs (6), (7), (9) and
(10). The coordinates of the centre of gravity to-
wards the inertial reference frame were obtained by
utilisation of Eq. (16) to (25), similarly to SESTAK et
al. (1993) and ScHAUB et al. (2002). Using Eq. (16),
we determined the stability of the evaluation of
Euler’s parameters and also the error of the evalua-
tion, which was in the range of 3.107%-4.107'3, To
solve the system of simultaneous differential equa-
tions (Eq. 17), we used Dormand-Prince method in
the form of Eq. (12) for the computation of Euler’s
parameters. By means of Euler’s parameters, we
created the transformation matrix in the form:

2(9,93 + 9194)
qi +a5 —aqi—a3
2(9394 — 9192)

n [qf +95—a5—dqi
2(9293 — 9194)
2(q492 +9193)

[MT]L' =

i=1

whereas in every i-cycle the matrix is transposed.
The components of the vectors of the translational
and angular velocities of the centre of gravity in the
inertial system were determined from the transfor-
mation equations as follows:

dx(t) de,(t)
dt dt
Z}Z = [m,]| x|%® Z)))y(i I Y e O
el 17 dt | g al dt
¢ Eoldz(t) Lo1de,(t)
dt - T i
(27)

In Fig. 1, the translational velocities are shown
for Manoeuvres 1, 2, 3, and 4.

The coordinates of the centre of gravity in the in-
ertial system were obtained by integration:

Xg . [VxE
YE =f0 Vyg| dt
ZE1; [ VzE l;

(28)

1T
2(‘]2(13 - Q1Q3)
2(9394 + 9193)
qi +af —q5 —d3l;

(26)
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Table 1. The lengths of the trajectories for Manoeuvres
1,2, 3,and 4

Trajectory Error of numerical
Manoeuvre . .
(s, m) integration
1 11.076 -8.515E-14
2 17.996 —4.689E-13
3 18.744 —4.026E-13
4 18.169 -1.197E-12

Real trajectories of Manoeuvres 1, 2, 3, and 4
were obtained by solving Eq. (28) and are shown
in Fig. 2.

To obtain the length of each trajectory of Manoeu-
vres 1, 2, 3, and 4, we used Eq. (6). The application
of the methods of differential geometry gives us dif-
ferential equations that describe the function of the
spatial curve, in this case the trajectory. To solve these
differential equations, we used the application created
in the Delphi development environment. This appli-
cation implements the numerical method Dormand-
Prince (Eq. 12) and enables us to obtain the results of
differential equations by numerical integration. The

(a)

100 7

Radius of the curvature (m

Time (s)

Radius of the curvature (m)

Time (s)

results achieved are given in Table 1. Also listed are
the errors of numerical integration for each evalua-
tion of the length of the vehicle trajectory.

According to Eq. (11), we evaluated the values of
the radius of curvature for each manoeuvre. Fig. 3
shows the continuances of the radiuses of curva-
ture for Manoeuvres 1 to 4. Due to limpidity, we
reduced the number of the displayed points in Ma-
noeuvres 1 and 2 in Fig 3a, b. We used the logarith-
mic scale to display the graphs. For the evaluation
of parameters in Egs (8), (9), and (10), we substitute
XYz x,y,z,x%y", 2" by Xp Vp Zp Vep Vip Vop
Appr Aoy @ s respectively.

As shown in Fig. 3, the shapes of the curves have
a stochastic continuance. From the realised simu-
lation computation it follows that the acceleration
function has a deforming influence on the con-
tinuance of the radius of curvature. It is possible
to obtain a smoother continuance of the accelera-
tion functions by reverse derivation, but we do not
recommend it because of a high inaccuracy. The
results of the length of trajectory obtained by the
approach mentioned seem highly evidentiary in
comparison with the real experiment.
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Fig. 3. Radius of curvature of the vehicle trajectory: (a) Manoeuvre 1; (b) Manoeuvre 2; (c) Manoeuvre 3; (d) Manoeuvre 4
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CONCLUSION

In this contribution, we addressed the applica-
tion of differential geometry in the determination
of the trajectory followed by the systemic vehicle
MT8-222 in executing four different manoeuvres
on the sloping terrain. We also dealt with the evalu-
ation of the radius of curvature for each manoeuvre.
The length of the trajectory was 11.076 m for Ma-
noeuvre 1, 17.996 m for Manoeuvre 2, 18.744 m for
Manoeuvre 3, and 18.169 m for Manoeuvre 4. The
radiuses of curvature for each manoeuvre are inter-
preted in a graphic way. The described methodolo-
gy using Euler’s parameters has been published also
by SESTAK et al. (1993), as well as by SCHAUB et al.
(2002), REDL (2007), and WIE (2008). The stability
of the numerical integration was provided by the
determination of the error of the numerical inte-
gration. The step of the numerical integration was
determined as hn = 1/56, which corresponds with
the experimental measurement on the agricultural
machine. The methods and approaches presented
are utilisable in the case of the determination of the
specified trajectory and required manoeuvres of
automatic mobile devices in the field of precision
agriculture, as well as in the modelling and simula-
tion of the vehicle motion or in the research into
dynamic effects on the vehicle.
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