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Abstract

Rédl J., Váliková V., 2013. Application of diff erential geometry in agricultural vehicle dynamics. Res. Agr. Eng., 
59 (Special Issue): S34–S41.

Th is paper deals with the application of diff erential geometry methods to a precise calculation of the length of trajec-
tory of an agricultural mechanism that moves on a sloping terrain. We obtained technical exciting function from ex-
perimental measurements, out of which we obtained the function of Euler’s parameters by using computer processing. 
Th e processing of these parameters provided translational and angular velocities of the gravity centre of the systemic 
vehicle MT8-222, which performed the determined mounted manoeuvres. We obtained diff erential equations that 
describe the function of a spatial curve by the application of diff erential geometry methods. Th e length of the curve is 
obtained by a numerical solution of the diff erential equations formed. We used Dormand-Prince numerical method 
for the numerical solution. Next, we evaluated the error of the numerical integration for every calculation by reason 
of the stability of computation. We also addressed the geometric characteristics of the curves such as the radius of 
curvature. Th e mounted manoeuvres as well as the corresponding velocities, trajectories, and radiuses of curvature 
were processed in a graphic way.

Keywords: trajectory modelling; numerical integration; radius of curvature

Th e analysis, planning, and optimisation of the ve-
hicle trajectory are nowadays intensively examined 
problems not only in the fi eld of the agricultural 
mechanisms movement in relation to precision agri-
culture but also in the modelling and simulation of the 
vehicle motion and in the research into the dynamic 
eff ects on the vehicle. Th e research into the trajectory 
of the vehicle motion focuses also on the fi elds of de-
velopment and design of the set mechanisms capable 
of autonomous decision and generation of the trajec-
tory according to the input values from the sensors. 
Such a design is preceded by a simulation process 
which is based on diff erential moving equations of a 
rigid body as well as of a system of rigid bodies. Euler’s 
parameters are used for the spatial dislocation of the 

vehicle and spatial transformation based on orthogo-
nal matrices as well as the principles of diff erential 
geometry. To defi ne the tire – ground relationship, 
the principles of terramechanics are advantageously 
used. An intensive research is realised also in the 
fi elds of the analysis of the vehicle trajectory in diff er-
ent reference coordinate axes, when the dynamics of 
transport is investigated as introduced in Punzo et al. 
(2011). Th ey point out the possibility of obtaining the 
exact vehicle trajectory with the help of GPS or using 
the simulation programme NGSIM (Next Generation 
SIMulation; Federal Highway Administration, Wash-
ington DC, USA). It is possible to obtain precise val-
ues of the trajectory length by utilisation of GPS data, 
but a high risk exists of the loss of signal in mountain-
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ous areas. Purwin and D’Andrea (2006) dealt with 
the generation and planning of the vehicle trajectory 
to provide its exact motion and minimise its trajec-
tory to the accurately specifi ed destination. Th e anal-
ysis of the stability of motion and the compliance of 
the specifi ed trajectory of the vehicle motion are pro-
cessed in the works of Ailona et al. (2005) and Yoon 
et al. (2009). Yoon et al. (2009) designed a dynamic 
model for the generation of the vehicle trajectory fol-
lowing the properties of the terrain and dislocation of 
a terrain barrier where there it is not possible to pass 
through it. Antos and Ambrósio (2004) presented 
strategies of the control of vehicle motion pursuant 
to the dynamics of rigid bodies. Th ey realised simu-
lations in the environment of the program Matlab® 
(MathWorks, Natick, USA). For spatial transforma-
tions, Euler’s parameters were used advantageously. 
Th e result was the design of a driver which is able to 
provide vehicle motion according to the trajectory 
generated before. Under the authority of the diff eren-
tial geometry, model and real trajectories were evalu-
ated. Almost in every work, the trajectory was gener-
ated by dynamic equations that had been generalised 
by Pacejka (2005).

MATERIAL AND METHODS

Th e length of the curve. Šalát (1981) as well 
as Ivan (1989) describes the length of the curve by 
means of diff erential geometry in the identical way. 
Parameterisation of the curve is addressed also by 
Agoston (2005). 

Let K be a curve, which is defined by para-
meterisation:

 (1)r = r(t); t <α, β>

where:
r – denomination of function for parameterisation
r(t) – parameterisation of curve K in point t
α, β – initial and end point of the curve

Denote R(α) = A, R(β) = B. Th e point A  is the 
original point and point B is the fi nal one of the 
curve K when its orientation is induced by param-
eterisation. Let D = {t0, t1, t2, … , tr}, where α < t0 < 
t1 < t2 …< tr = β is a certain division of the interval 
<α, β>. 

where: 
R(α) – parameterisation of curve K in point α
R(β) – parameterisation of curve K in point β

D – set of points, which divides interval <α, β> into 
r-divisions

t0–tr – r-divisions of interval <α, β>

Denote Mi = R(t), for i = 0, 1, 2, … , r. Points 
M0, M1, … , Mr follow gradually one after another in 
the orientation of the curve accordant with param-
eterisation (1), thus:

A = M0 < M1 < M2 < ... < Mr = B  (2)

Th ese points divide the curve K  into r par-
tial curves (arcs) 𝑖 𝑖. We substitute each 
of them by an abscissa (subtense) Mi–1Mi. We 
denote the broken line consisting of abscissas 
Mi–1Mi (i = 1, 2, ... , r) as K(D). We say that the bro-
ken line K(D) is inscribed into the curve K. 

Let’s (D) denote the length of the broken line 
K(D). Hence:

  (3)

where:
d – length of the partial curves

It can happen (if the curve is not simple) that the 
point Mi–1 is identical with the point Mi for some i. 
In this case, it holds that d(Mi–1, Mi) = 0.

Using the foregoing way, every division D of the 
interval <α, β> is assigned a  positive number s(D), 
which presents the length of the corresponding in-
scribed break line K(D). To every sequence {Dn} of the 
division of the interval <α, β> appertains the sequence 
of number {s(Dn)}. It is evident that, if there exists 
a number, that d(Dn ) ≤ s for every division Dn and the 
lower the diff erence d(Dn) ≤ s the smoother the divi-
sion D, then the non-negative number s is called the 
length of the curve K. We establish a defi nition:

If the corresponding sequence {s, Dn} for every 
regular sequence {Dn} of the division of the inter-
val <α, β> is convergent and the limit does not de-
pend on the selection of sequence {Dn}, we say that 
the curve K is rectifi able and we name the number 

  its length.
According to this defi nition and knowledge of 

the transformation of the parameter of the curve, 
it can be relatively easy to prove that the length of 
the curve does not depend on its parameterisation. 
From the geometric point of view, it is an obvious 
requirement for the defi nition of the curve length.

From the defi nition of the curve length and theo-
rems about the limit of numeric sequence follows 
the veracity of the next theorem.

Res. Agr. Eng. Vol. 59, 2013 (Special Issue): S34–S41



S36 

Using Eq. (7) and its fi rst and second derivation 
leads to the relation for the curvature of the curve. 
We establish determinants A, B, C as: 

 
 (9)

For the curvature in every point of the curve K 
then holds:

  (10)

From the preceding relations we can defi ne the 
radius of curvature as the reciprocal of the curva-
ture:

 
 (11)

Numerical integration. In the created applica-
tion, the numerical method is implemented for 
integration of Runge-Kutta methods, especially 
Dormand-Prince method.

 
Th is method is ana-

lysed in the paper of its authors Dormand and 
Prince (1980). Th ey presented this method thanks 
to Butcher’s table, in which the coeffi  cients of the 
individual terms in the equations are described. 
Butcher’s table was used also by Hoppensteadt 
(2007). Th e equations for Dormand-Prince method 
have the following forms:

 
 

 
  

 
 
 

k6 = hn f xn + hn , yn +
9,017

3,168
k1

355

33
k2

46,732

5,247
k3 +

+
492

176
k4

5,103

18,656
k5

Th eorem 1 (monotony property)
If the curve K is rectifi able and its length is s, then 

its each part K' is rectifi able too and for its length 
s' holds: s ≤ s'. 

By the help of this theorem, the theorem about 
other important property of the curve length (ad-
ditive property) can be proved.

Th eorem 2 (additive property)
(a) If the curve K is rectifi able, then for its optional 

division into the fi nal number of partial curves 
K1, K2, … , Kn each from parts K1 is rectifi able 
and it holds:

s = s1 + s2 + … + si + ... +sn (4)

where: 
s – length of the curve K
si – length of its parts Ki, i = 1, 2, … n

(b) Th e curve K, which is the connection of the fi -
nal number of rectifi able curves K1, K2, ..., Kn, 
is also rectifi able and for its length s holds the 
equality (4).

Th e following theorem speaks out about a suffi  -
cient condition of the curve rectifi ability.

Th eorem 3

Let r = r(t), t <α, β> be parameterisation of the 
curve K. If the function r has a continuous deriva-
tive r' in the interval <α, β> (in the point A from the 
right, in the point B from the left), then the curve K 
is rectifiable and for its length s holds:

 (5)

that is:   
(6)

if r(t) = x(t)i + y(t)j + z(t)k  (7)

where:
i, j, k – unity vectors
x, y, z – coordinates

Th is corollary follows from the defi nition of the 
regular and partly regular curves and from theo-
rems 2 and 3.

When we utilise the parameterisation of the 
curve K, we obtain a fl exion of the curve. For the 
regular curve K holds that for every point the fl ex-
ion equals:

 
 

(8)
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1
5
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1
5
k1

⎛
⎝⎜

⎞
⎠⎟

k3 = hn f xn +
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10
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k1 = hn f  (xn, yn)

yn+1 = yn +
35

284
k1 +

500
1,113

k3 +
125
192

k4 −
2,187
6,784

k5 +
11
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k6

k5 = hn f xn +
8

9
hn , yn +

19,372

6,561
k1

25,360

2,187
k2 +

64,448

6,561
k3

212

729
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k7 = hn f xn + hn , yn +
35

384
k1

500

1,113
k3 +

125
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k4

2,187

6,784
k5 +

11
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k6

(12)
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where: 

k
1
–k

7
 – Runge-Kutta koeffi  cients

hn – step of the numerical integration

yn, yn+1
 –the value in the points xn, xn+1

Quaternion feedback control. Wie (2008) con-

siders the attitude dynamics of a rigid vehicle de-

scribed by Euler’s rotational equation of the motion:

Jω
.
  + ω × Jω = u (13)

where:

J – inertia matrix

ω = (ω
1
, ω

2
, ω

3
) – angular velocity vector

u = ( u
1
, u

2
, u

3
,) – control torque input vector

Th e cross product of two vectors is represented 

in the matrix notation as

  (14)

where:

h = Jω – angular momentum vector

It is assumed that the angular velocity vector 

components ωi along the body/fi xed control axes 

are measured by rate gyros.

Euler’s rotational theorem states that the rigid 

body attitude can be changed from any given orien-

tation to any other orientation by rotating the body 

around an axis, called the Euler axis, which is fi xed 

to the rigid body and is stationary in inertial space. 

Such a rigid body rotation around the Euler axis is 

often called the eigenaxis rotation.

Let a unit vector along the Euler axis be denoted by 

e = (e
1
, e

2
, e

3
), where e

1
, e

2
 and e

3 
are direction cosines 

of the Euler axis relative to either an inertial reference 

frame or the body – fi xed control axes. Th e four ele-

ments of quaternions (q
1
–q

4
) are then defi ned as: 

q
1
 = e

1
sin(θ/2)

q
2
 = e

2
sin(θ/2)

 (15)
q

3
 = e

3
sin(θ/2)

q
4
 = cos(θ/2)

where:

θ – denotes the rotation angle around the Euler axis

and we have: 

 (16)

Th e quaternion kinematic diff erential equations 

are given by:

 

 
 

(17)

Like the Euler-axis vector e = (e
1
, e

2
, e

2
), defi ning 

a quaternion vector q = (q
1
, q

2
, q

2
) as:

q = e
 
sin(θ/2) (18)

we rewrite Eq. (17) as 

2q
.
  = q

4
ω – ω × q

2q
.
  = –ωTq

 (19)

where:

  (20)

Because quaternions are well-suited for on-board 

real-time computation, the vehicle orientation is 

nowadays commonly described in terms of qua-

ternions, and a linear state feedback controller of 

the following form can be considered for real-time 

implementation:

u = –Kqe – Cω (21)

where q
e 

= (q
1e

, q
2e

, q
3e

) is the attitude error quater-

nion vector and K and C are controller gain matri-

ces to be properly determined. Th e attitude error 

quaternions (q
1e

, q
2e

, q
3e

, q
4e

) are computed using 

the desired or commanded attitude quaternions 

(q
1c

, q
2c

, q
3c

, q
4c

) and the current attitude quaterni-

ons (q
1
, q

2
, q

3
, q

4
) as follows:

 
 

(22)

If the commanded attitude quaternion vector is 

simply the origin defi ned as

(q
1c

, q
2c

, q
3c

, q
4c

) = (0, 0, 0, +1) (23)

then the control logic (21) becomes: 

u = –Kq – Cω  (24)

On the other hand, if the origin is chosen as (0, 0, 

0, –1), then the control logic (21) becomes:

u = +Kq – Cω (25)q2
1
 + q2

2
 + q2

3
 + q2

4
 = 1
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Agricultural machine and determination of 

manoeuvres. Th e agricultural machine used in 

these experiments was the systemic vehicle MT8-

222 (ZTS Obchodný podnik, Slovenská Ľupča, Slo-

vak Republic) that is designated for working on the 

sloping terrain. Th e design of this machine is ad-

dressed by Páltik et al. (2007). Th e average value of 

the slope gradient was 30–33 degrees. Experimen-

tal measurements were done from which we got the 

functions of the acceleration of the centre of gravity. 

When we processed these functions with a comput-

er, we obtained Euler’s parameters. Th e processing 

of these parameters yielded the translational and 

angular velocities of the centre of gravity of the sys-

temic vehicle MT8-222, which performed the deter-

mined mounted manoeuvres. Th e moments of iner-

tia of the vehicle with respect to the x, y, z axes were 

Jx 
= 240 kg.m2, Jy 

= 520 kg.m2, and Jz 
= 950 kg.m2. Th e 

weight of the vehicle was 1.356 kg.

Four diff erent manoeuvres were executed:

Manoeuvre 1: moving on the slope along the down-

grade slope with braking.

Manoeuvre 2: moving on the slope along the down-

grade slope with turning to the down-grade slope.

Manoeuvre 3: moving on the slope along the 

hillside with turning to the hillside.

Manoeuvre 4: moving on the slope along the 

down-grade slope with 45 degree yaw angle with 

turning to the down-grade slope. 

Th e real trajectories executed during the ma-

noeuvres are shown below. We assume that all of 

the discreet functions used by us were in the given 

interval <0, t>, where t is the time of the manoeuvre 

execution, continuous. We suppose the existence 

of the position vector of the vehicle centre of grav-

ity towards the origin of inertial coordinate system 

in every instant of time. During the manoeuvres 

execution, there was no overturn of the vehicle.

We respected the standard SAE J670 200801 (1976) 

as for the terminology of the vehicle dynamics.

RESULTS AND DISCUSSION 

We recommend for use in practice that curves, 

obtained by this approach, were approximate by 

polynomial functions owing to the achievement 

of better smoothness of the function continuance, 
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Fig. 1. Translational velocities of the centre of gravity: (a) Manoeuvre 1, (b) Manoeuvre 2, (c) Manoeuvre 3, (d) Manoeuvre 4

Vx, Vy, Vz – velocities in the direction of x, y, z axis, respectively

Time t (s)

Time t (s)
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whereas in every i-cycle the matrix is transposed. 

Th e components of the vectors of the translational 

and angular velocities of the centre of gravity in the 

inertial system were determined from the transfor-

mation equations as follows:

 

 

(27)

In Fig. 1, the translational velocities are shown 

for Manoeuvres 1, 2, 3, and 4.

Th e coordinates of the centre of gravity in the in-

ertial system were obtained by integration:

  (28)

Fig. 2. Vehicle manoeuvres: (a) Manoeuvre 1; (b) Manoeuvre 2; (c) Manoeuvre 3; (d) Manoeuvre 4

(a)

(b)

(c)

(d)

whereas our functions have a stochastic character. 

Th e algorithm we formed uses also characteristic 

parameters of the curve such as fl exion, torsion, 

and curvature, but their exposure would surpass 

the size of this contribution. Th at is why we pres-

ent only the radius of curvature ρ. We substitute 

the values of translational accelerations, velocities, 

and the dislocations of the centre of gravity into the 

corresponding parameters in Eqs (6), (7), (9) and 

(10). Th e coordinates of the centre of gravity to-

wards the inertial reference frame were obtained by 

utilisation of Eq. (16) to (25), similarly to Šesták et 

al. (1993) and Schaub et al. (2002). Using Eq. (16), 

we determined the stability of the evaluation of 

Euler’s parameters and also the error of the evalua-

tion, which was in the range of 3.10–13–4.10–13. To 

solve the system of simultaneous diff erential equa-

tions (Eq. 17), we used Dormand-Prince method in 

the form of Eq. (12) for the computation of Euler’s 

parameters. By means of Euler’s parameters, we 

created the transformation matrix in the form:

 (26)
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Real trajectories of Manoeuvres 1, 2, 3, and 4 

were obtained by solving Eq. (28) and are shown 

in Fig. 2.

To obtain the length of each trajectory of Manoeu-

vres 1, 2, 3, and 4, we used Eq. (6). Th e application 

of the methods of diff erential geometry gives us dif-

ferential equations that describe the function of the 

spatial curve, in this case the trajectory. To solve these 

diff erential equations, we used the application created 

in the Delphi development environment. Th is appli-

cation implements the numerical method Dormand-

Prince (Eq. 12) and enables us to obtain the results of 

diff erential equations by numerical integration. Th e 

results achieved are given in Table 1. Also listed are 

the errors of numerical integration for each evalua-

tion of the length of the vehicle trajectory. 

According to Eq. (11), we evaluated the values of 

the radius of curvature for each manoeuvre. Fig. 3 

shows the continuances of the radiuses of curva-

ture for Manoeuvres 1 to 4. Due to limpidity, we 

reduced the number of the displayed points in Ma-

noeuvres 1 and 2 in Fig 3a, b. We used the logarith-

mic scale to display the graphs. For the evaluation 

of parameters in Eqs (8), (9), and (10), we substitute 

x, y, z, x΄, y΄, z΄, x˝, y˝, z˝ by xE, yE, zE, vxE, vyE, vzE, 

axE, ayE, azE, respectively. 

As shown in Fig. 3, the shapes of the curves have 

a stochastic continuance. From the realised simu-

lation computation it follows that the acceleration 

function has a deforming infl uence on the con-

tinuance of the radius of curvature. It is possible 

to obtain a smoother continuance of the accelera-

tion functions by reverse derivation, but we do not 

recommend it because of a high inaccuracy. Th e 

results of the length of trajectory obtained by the 

approach mentioned seem highly evidentiary in 

comparison with the real experiment. 

Table 1. Th e lengths of the trajectories for Manoeuvres 

1, 2, 3, and 4

Manoeuvre
Trajectory 

(s, m)

Error of numerical 

integration

1 11.076 –8.515E-14

2 17.996 –4.689E-13

3 18.744 –4.026E-13

4 18.169 –1.197E-12

Fig. 3. Radius of curvature of the vehicle trajectory: (a) Manoeuvre 1; (b) Manoeuvre 2; (c) Manoeuvre 3; (d) Manoeuvre 4
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CONCLUSION

In this contribution, we addressed the applica-

tion of diff erential geometry in the determination 

of the trajectory followed by the systemic vehicle 

MT8-222 in executing four diff erent manoeuvres 

on the sloping terrain. We also dealt with the evalu-

ation of the radius of curvature for each manoeuvre. 

Th e length of the trajectory was 11.076 m for Ma-

noeuvre 1, 17.996 m for Manoeuvre 2, 18.744 m for 

Manoeuvre 3, and 18.169 m for Manoeuvre 4. Th e 

radiuses of curvature for each manoeuvre are inter-

preted in a graphic way. Th e described methodolo-

gy using Euler’s parameters has been published also 

by Šesták et al. (1993), as well as by Schaub et al. 

(2002), Rédl (2007), and Wie (2008). Th e stability 

of the numerical integration was provided by the 

determination of the error of the numerical inte-

gration. Th e step of the numerical integration was 

determined as hn = 1/56, which corresponds with 

the experimental measurement on the agricultural 

machine. Th e methods and approaches presented 

are utilisable in the case of the determination of the 

specifi ed trajectory and required manoeuvres of 

automatic mobile devices in the fi eld of precision 

agriculture, as well as in the modelling and simula-

tion of the vehicle motion or in the research into 

dynamic eff ects on the vehicle. 
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