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Abstract
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The paper presents an application which uses Feed Forward Neural Networks (FFNNs) to model the non-linear behaviour
of the terebinth fruit drying. Mathematical models and Artificial Neural Networks (ANNs) were used for prediction of
effective moisture diffusivity, specific energy consumption, shrinkage, drying rate and moisture ratio in terebinth fruit.
Feed Forward Neural Network (FFBP) and Cascade Forward Neural Network (CENN) as well as training algorithms
of Levenberg-Marquardt (LM) and Bayesian regularization (BR) were used. Air temperature and velocity limits were
40-80°C and 0.81-4.35 m/s, respectively. The best outcome for the use of ANN for the effective moisture diffusivity
appertained to CFNN network with BR training algorithm, topology of 2-3-1 and threshold function of TANSIG.
Similarly, the best outcome for the use of ANN for drying rate and moisture ratio also appertained to CFNN network

with LM training algorithm, topology of 3-2-4-2 and threshold function of TANSIG.
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Terebinth (Pistacia atlantica L.) is an ancient and
long-life tree with about 5 m height. Terebinth fruit
is small and spherical-like with dark green colour.
Kernel of terebinth fruit is similar to pistachio, but
much smaller. Terebinth fruit is used in buttermilk
process and animal oils and also it is used to make
pickles. The harvested terebinth fruit has too much
moisture (about 2.6 g H,0O/g of dry matter (d.m.)),
which causes fast spoilage of the fruit.

Drying is defined as a preservation method ap-
plied at industrial scale in order to minimize the
biochemical, chemical, and microbiological spoil-
age by reducing the water quantity and the water
activity of fruits and vegetables. Water is trans-
ferred by diffusion from the interior of food mate-
rial to the air-food interface and from there to the
air stream by convection (CAKMAK, YiLD1z 2011).

Fluidized bed drying is one of the best methods in
dehydration of high moisture products. This meth-
od can improve the quality of final product, such as:
colour, taste and nutritional content (ALiBAS 2007).
Moreover, this method can increase the moisture
removal rate. Fluidization includes minimum fluid-
ized bed (semi-fluidized bed) and bubbling fluidized
bed. Fixed bed is before minimum fluidized bed and
transportation phenomenon occurs after bubbling
fluidized bed (AMIRI CHAYJAN et al. 2012).

In practical applications drying process requires
high energy input because of high latent heat of wa-
ter evaporation and relatively low energy efficiency
of industrial dryers. Thus, one of the most impor-
tant challenges of the industrial dryers is to reduce
the energy cost versus good quality of dried prod-
ucts (NAZGHELICHI et al. 2011).
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Effective moisture diffusivity (D g) is an impor-
tant index in modelling, designing and optimizing
of a drying process. Effective moisture diffusivity
value determines the mass transfer rate from prod-
uct in drying process (HASHEMI et al. 2009).

One of the undesirable changes which occur si-
multaneously within moisture diffusion in drying
process is the reduction of volume or shrinkage;
modifying physical properties, heat and mass ex-
change area and in particular affecting the diffu-
sion coeflicient of the materials. In general, shrink-
age occurs as a result of volume reduction due to
evaporation of the moisture contained in the solid.
Heating and loss of water cause stresses in the cel-
lular structure of the food and lead to changes in
shape and decrease in dimensions (MAYOR, SERE-
NO 2004; HAsHEMI et al. 2009).

An artificial neural network (ANN) consists of
processor units, namely neurons, which are con-
nected with each other in special arrangement.
Every network includes some neurons in the input
layer and in one or more hidden layers, and also
one or more neurons in the output layer. Variations
in neuron model and relationship between neu-
rons, and their weights determine algorithms and
architectures of ANN. ANN has powerful learning
ability and identifying and modelling ability for the
complex non-linear relationships between the in-
put and the output of a system (NAZGHELICHI et
al. 2011). Some workers applied ANNs for model-
ling of drying (BALA et al. 2005; MOVAGHARNEJAD,
Nikzap 2007; LERTWORASIRIKUL, TIPSUWAN
2008; AMIRI CHAYJAN et al. 2012).

No study has been reported about moisture dif-
fusivity, shrinkage, specific energy consumptions,
drying rate and moisture ratio of terebinth fruit by
ANN method. The main goals of this study were
artificial neural network modelling of effective
moisture diffusivity, specific energy consumption,
shrinkage, drying rate and moisture ratio of ter-
ebinth fruit.

MATERIAL AND METHODS

Fresh terebinth (Pistacia atlantica L.) was har-
vested from the Sardasht forests in Iran and stored
in a refrigerator at about 4°C. The initial moisture
content of the terebinth was determined by dry-
ing of 30 g of sample in an oven at 70 + 1°C. Ex-
periments were replicated three times. The initial
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Fig. 1. Fluidization curve of terebinth fruit and selected

points for modelling

A, B — fixed bed (0.81 and 1.38 m/s); C — semi fluid bed
(2.08 m/s); D, E — fluid bed (3.35 and 4.43 m/s)

moisture content of the terebinth was observed to
be 2.6 g H,0/g d.m. The drying of terebinth fruit
was investigated in a laboratory scale fluidized bed
dryer (FBD) developed in the Bu-Ali Sina Universi-
ty, Hamedan, Iran (AMIRI CHAYJAN, KAVEH 2014).

Five experimental points of drying were selected
on fluidization curve (Fig. 1). At first, pressure drop
of terebinth was determined at different air flow ve-
locities. Fan speed was gradually increased using an
inverter (Vincker VSD2; ABB Co., Taipei, Taiwan)
and parameters of pressure drop and air velocity
were recorded using a multifunction measurement
device (Standard ST-8897; Standard Instruments
Co., Kowloon, Hong Kong). It consists in a differ-
ential digital manometer with + 0.1 Pa accuracy and
a vane type digital anemometer with + 0.1 m/s ac-
curacy (Lutron AM-4202; Electronic Enterprise Co.,
Taipei, Taiwan). Max. value of static pressure drop
(point C in Fig. 1) in fluidization curve of terebinth
is known as min. fluidization point or semi fluid-
ized bed. Experimental points in fixed bed domain
were determined with air velocities about 0.81 and
1.35 m/s (points A and B in Fig. 1), also experimen-
tal points D and E with air velocities about 3.35 and
4.43 m/s, respectively, was selected as a fluidized bed
condition. Five bed conditions (fixed bed at 0.81 and
1.35 m/s, semi fluidized bed at 2.08 m/s and fluid-
ized bed at 3.35 and 4.43 m/s) and five air tempera-
tures of 40, 50, 60, 70 and 80°C were applied in the
drying experiments. Drying experiments were con-
ducted in three replications.

Fick’s second low of diffusion with sphere geom-
etry was used for computing the effective moisture
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diffusivity. It was assumed that seed shrinkage after
drying process is negligible and distribution of ini-
tial moisture is uniform. Fick’s equation for com-
puting effective moisture diffusivity of terebinth
seeds is as follows:

1n(MR):1n[M] _ ln(%)_[DLzrzt] o
MO_Me T r

where:

MR — moisture ratio

M, - moisture content at any time (% d.b.)

M, - equilibrium moisture content (% d.b.)

M, — initial moisture content (% d.b.)

n - number of terms taken into consideration
t —drying time (s)

D, — effective moisture diffusivity (m*/s)

r  —radius of kernel (m)

Specific energy consumption (SEC) for terebinth
drying was obtained using the thermodynamic
models (AMIRI CHAYJAN, KAVEH 2014).

Ten terebinth fruits were used for each shrinkage
measurement. Shrinkage was expressed in terms of
the percentage change of the volume of terebinth as
compared with its original volume:

V,-V
S, = M x 100 (2)
Vo
where:
S, — shrinkage (%)
V. — volumes of terebintht the beginning (before drying)

0

Ve - volumes of terebinth at the end of each boiling

experiment

The measurement of the sample volume was
performed using a digital calliper (SKU 8372062;
Pro Tool Point Inc., Lake Forest, USA) (NIAMNUY
et al. 2012).

The drying rate is approximately proportional
to the difference in moisture content between the
material being dried and equilibrium moisture
content at the drying air state (CAKMAK, YALDIZ
2011). According to this definition, the drying rate
(DR) of terebinth samples is usually determined
using:

(M +dt _Mt)

t

dt

DR = (3)
where:

M, — moisture content at any time (% d.b.)

t —drying time (min)

doi: 10.17221/56/2013-RAE

The most common types of ANN are Feed and
Cascade forward neural networks. These networks
are applied to predict outputs of new unknown pat-
terns. Furthermore, in this study, these networks
as well as two learning algorithms were utilized.
Feed Forward Back Propagation (FFBP) consists of
input, hidden and output layers (AMIRI CHAYJAN,
Esna-AsHARI 2010). Back propagation (BP) learn-
ing algorithm was used to train this network. Dur-
ing training by BP algorithm, layer weights were
updated at the first epoch. The weight coefficients
were updated by learning rules and weight values.
During training this network, calculations were
conducted from input to output and error values
were then propagated to prior layers. Cascade
Forward Back Propagation (CFBP) operation us-
ing the BP algorithm for weights updating is simi-
lar to FFBP network, but the main feature of this
network is that each layer of neurons is connected
to all previous neurons layers. Two algorithms in-
cluding Levenberg-Marquardt (LM) and Bayes-
ian regulation (BR) back propagation algorithms
were used for network training (KEERATIPIBUL
et al. 2011).

Applying the two inputs in all experiments, the
effective moisture diffusivity, specific energy con-
sumption and shrinkage values were calculated for
different conditions. In the first type networks, two
neurons in input layer (air velocity and tempera-
ture) and one neuron in output layer (D, SEC or
shrinkage) were considered. Also with applying
three inputs (air velocity, air temperature and dry-
ing time) in all experiments, the DR and MR values
were computed for different conditions.

Figs 2 and 3 show the input and output param-
eters for considered neural network topologies.
Levels and boundaries of input parameters are
presented in Table 1. Matlab software (The Math-
Works Inc., Natick, USA) with neural network
toolbox was used in this study.

Table 1. Input parameters for artificial neural networks
and their boundaries for prediction of effective moisture
diffusivity, specific energy consumption and shrinkage of
terebinth, drying rate and moisture ratio of terebinth

Parameter Min. Max. No. of levels
Air temperature (°C) 40 80 5

Air velocity (m/s) 0.81 4.43 5
Time (min) 3 420 147
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Fig. 2. Artificial neural net-

Inputlayer ‘ ‘ First hidden layer ‘ ‘ Second hidden layer ‘ ‘ Outputlayer
work topology of D ., SEC or
shrinkage of terebinth fruit
N - number of neurons; D ;. —
A (‘l(:) " effective moisture diffusivity;
— SEC - specific energy con-
sumption
shrinkage
—
Optimized number of layers and neurons for var- m
ious topologies was selected by increasing method. X;= ZWz-,- XY+, 7)
i=1

With this approach, when the output was trapped
into the local minimum, new neuron and layer
were gradually added to the network. Also differ-
ent threshold functions were tested to achieve the
optimized topology (DEMUTH et al. 2007):

Y, =X, (PURELIN) (4)
v - 2
I (1+ exp(—ZXj)— 1 (TANSIG) (5)
1
Y, = (LOGSIG) (6)

a 1+exp(—X1.)

where:

Y, — j* neuron output

X, —sum of weighed inputs for each neuron in j% layer
and computed according to Eq. (7):

where:

m — number of output layer neurons

W,; — weight coefficient between i and j* layers

Y, - i neuron output

b, - bias of j!" neuron for FFBP and CFBP networks

Experimental data of 40, 50, 60, 70 and 80°C were
selected for training network with suitable topol-
ogy and training algorithm. About 75% of all data
were randomly selected for training network with
suitable topology and training algorithm.

The index of mean square error (MSE) is deter-
mined to minimize the training error (DEMUTH
et al. 2007). Also the supplementary indices of de-
termination coefficient (R?), root mean square er-
ror, mean absolute error (MAE) and standard er-

Inputlayer || First hidden layer | | Second hidden layer | | QOutputlayer |

Air temperature
)

Time (s)
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Fig. 3. Artificial neural net-
work topology of DR and MR
of terebinth fruit

DR - drying rate; MR — mois-
ture ratio, N — number of neu-
rons; p — number of neurons
in the layer; m — number of

output layer neurons
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ror (STD,,,,) were used to optimize the network ity for kinetics analyses of fluidized bed drying of

from prior stage (AMIRI CHAYJAN, KAVEH 2014).
To increase the processing velocity and accuracy
of networks, the input data were normalized at
boundary of [0, 1].

RESULTS AND DISCUSSION

Plotting the logarithm of MR values versus the
drying time gave the values of D ¢ for different tem-
peratures together with regression coefficient of
determination (R?). From the results, D increased
with the increasing drying air temperature. The
values of D . ranged from 107° to 107" m?/s (VE-
GA-GALVEZ et al. 2012). The values of D for ter-
ebinth ranged from 1.1 x 107 to 1.26 x 107! m?/s.
Several investigations carried out on fruits and
vegetables under similar temperature and veloc-
ity conditions showed D _ values to lie between
3.22-15.3 x 107 m?/s for apple (VEGA-GALVEZ
et al. 2012), 1.72-3.31 x 107" m?/s for rape seed
(Duc et al. 2011), 8.21 x 1071 to 2.61 x 10~ m?/s
for castor oil seeds (PEREA-FLORES et al. 2012). The
following model is proposed to describe D . of the
terebinth fruit under fluidized bed dryer:

D =055x 107"y + 0.22 x 10T + -0.39 x 10~

R*=0.9692 (13)

where:
v — airflow velocity (m/s)
T_ - air temperature (°C)

Two networks of FFNN and CFNN were ap-
plied to map between inputs and outputs of pat-
terns. Different compositions of threshold func-
tions were tested in layers. Several topologies
were used and the best results were recommended
from each training algorithm, threshold function
and network (Table 2). The best results belonged
to CENN network, TANSIG threshold function
and 2-3-1 topology. This composition produced
MSE = 0.000004, R*> = 0.9932, MAE = 3 x 10" and
STD,,, = 6.15 converged in 12 epochs. The R? of
optimized ANN is plotted in Fig. 4. This trend is
identical to those reported in studies on agriculture
and food plants (AGHBASHLO et al. 2011; AMIRI
CHAYJAN et al. 2012).

Fig. 4 indicates the desired output values versus
the predicted values on a plot of moisture diffusiv-

terebinth fruit using the optimized ANN.

It was observed that shrinkage of terebinth fruit
increased with an increase in the temperature
and air velocity. Max. shrinkage value (72.2%) oc-
curred at air temperature of 80°C and air velocity of
4.43 m/s. Min. shrinkage (60.92%) was obtained at
air temperature of 40°C and air velocity of 0.81m/s.
Shrinkage percentage (S,) of terebinth fruit under
different bed conditions is presented in the follow-
ing model:

S, =0.37v +0.017, + 0.60 x 10T + 1.02

R? = 0.9684 (14)

where:
T, - air temperature
v - airflow velocity (m/s)

Forallbed conditions, the SEC decreased asdrying
air temperature was increased. Max. value of SEC
(1246.4 MJ/kg) was obtained at fluid bed condition
with air velocity of 4.43 m/s and air temperature
of 40°C, while the min. value of EC (130.2 MJ/kg)
was calculated at fix bed condition with air velocity
of 0.81 m/s and air temperature of 80°C. Specific
energy consumption of terebinth fruit under dif-
ferent bed conditions is presented in the following
model:

SEC =28.05 x 10%v + 12.49 x 10°T, + 4.55 x 10°T v +
+76.99 x 10°

R*=0.9853 (15)

where:

T, - air temperature

v - airflow velocity (m/s)

Two strategies of similar and various threshold
functions for all layers were utilized to study the
effect of different threshold functions on FFNN and
CFNN outputs (Table 2). Both strategies, as well as
learning algorithms of LM and BR, were used for
training of FFNN and CEFNN networks. Several
topologies were selected as the best results from
each threshold function, training algorithm and
network.

The best results for FEFNN for shrinkage (Table 2)
belonged to 2-3-3-1 topology and TANSIG-LOG-
SIG-TANSIG threshold function with LM algo-
rithm in the first strategy. This structure generated
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Table 2. Best selected topologies including training algorithm, different layers and neurons for FFNN and CENN for

effective moisture diffusivity, shrinkage and specific energy consumption

Training

No. of layers

: 2
Network algorithm Threshold function and neurons MSE R MAE S§TD,,,, Epoch
Effective moisture diffusivity
TANSIG-PURELIN-TANSIG 2-3-2-1 0.0009  0.9601 6.17 x 107" 8.11 19
TANSIG 2-3-1 0.00001  0.9876 4.95x 107! 10.57 10
FFNN
BR LOGSIG-PURELIN-TANSIG 2-3-3-1 0.00334 0.9501 6.99x 107" 12.25 14
TANSIG 2-5-1 0.00221  0.9514 6.44 x 10711 9.57 39
LM TANSIG-LOGSIG-TANSIG 2-3-3-1 0.00012 0.9872 3.48 x 107! 7.1 10
TANSIG 2-3-1 0.000004 0.9932 3.00 x 10°*  6.15 12
CFNN
TANSIG-LOGSIG-TANSIG 2-4-3-1 0.0013  0.9765 4.87 x 107 8.11 17
BR
TANSIG 2-5-1 0.0007  0.9802 4.09 x 107 8.39 19
Shrinkage
TANSIG-LOGSIG-TANSIG 2-3-3-1 0.00118  0.9774 0.242 0.90 10
LM
LOGSIG-PURELIN-TANSIG 2-3-2-1 0.00189  0.9769 0.381 0.64 105
FFNN
TANSIG 2-2-4-1 0.00661  0.9548 0.520 0.85 14
BR
TANSIG 2-5-1 0.00216  0.9705 0.391 0.21 19
TANSIG-PURELIN-TANSIG 2-3-4-1 0.00087  0.9887 0.412 0.74 8
LM
TANSIG 2-4-1 0.00001  0.9917 0.136 0.64 11
CENN
TANSIG- TANSIG-PURELIN  2-4-3-1 0.00122  0.9806 0.322 0.57 9
BR
TANSIG 2-5-1 0.00176  0.9761 0.378 0.65 10
Specific energy consumption
TANSIG 2-4-1 0.00114  0.9827 42.57 8.07 33
LM
PURELIN -LOGSIG-TANSIG 2-3-4-1 0.00401 0.9734 44.43 7.66 11
FFNN
TANSIG 2-2-3-1 0.00334  0.9780 45.31 8.97 23
BR
TANSIG 2-5-1 0.00516  0.9667 47.54 11.12 113
TANSIG 2-2-1 0.00047  0.9855 41.32 9.46 6
LM
TANSIG-PURELIN-TANSIG 2-4-3-1 0.00351  0.9769 46.95 11.54 11
CENN
TANSIG 3-3-4-1 0.00654  0.9221 59.87 16.7 90
BR
TANSIG 2-4-1 0.02114  0.8885 61.83 15.89 10

FENN - Feed Forward Neural Network; CEFNN — Cascade Forward Neural Network; LM — Levenberg-Mar-
quardt; BR — Bayesian regulation; MSE — mean square error, R? — determination coefficient; MAE — mean
absolute error, STDMAE — Standard deviation of mean absolute error; Epoch — learning cycle

MSE = 0.00118, R? = 0.9774 and MAE = 0.242 con-
verged in 10 epochs. The best results for FENN for
specific energy consumption (Table 2) belonged to
2-3-4-1 topology and PURELIN-LOGSIG-TANSIG
threshold function with LM algorithm in the first
strategy. This structure generated MSE = 0.00401, R?
=0.9734 and MAE = 44.43 converged in 11 epochs.

60

The best results for CENN for shrinkage be-
longed to topology of 2-4-1 with LM algorithm,
threshold function of TANSIG and the first strat-
egy. This composition output was MSE = 0.00001,
MAE = 0.136 and R? = 0.9917 at 11 training ep-
ochs. Also, the best results for CFNN for spe-
cific energy consumption belonged to topology of
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Fig. 4. Predicted values of effective moisture diffusivity
using artificial neural networks versus experimental values
for testing data set

2-2-1 with LM algorithm, threshold function of
TANSIG and the first strategy. This composition
output was MSE = 0.00047, MAE = 41.32 and
R* = 0.9855 at 11 training epochs.

Fig. 5 compares the desired output values with
the predicted values on a plot of shrinkage and
energy consumption for kinetics analyses of fluid-
ized bed drying of terebinth fruit using the optimal
static ANN.

Fig. 6 illustrates the drying rate versus drying
time at drying temperatures of 40, 50, 60, 70 and
80°C. After sample heating at the initial period,
the drying rate reached its max. value and then the
product dried at the falling rate period. Mass trans-
fer takes place initially at the sample surface and
loses relevance at subsequent stages. After surface
drying, the moisture diffusion process becomes
the most important factor. However, three differ-
ent drying periods observed during the experiment

—
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performed at 40°C is an exception to such ten-
dency. An initial heating period was followed by a
constant rate period, and finally by the falling rate
period.

These experimental results are similar to some
others published in literature, relating to drying
experiments concerning vegetables and agricul-
tural products; for instance grape (Ruiz CELMA et
al. 2009), poplar sawdust (CHEN et al. 2012), bar-
ley (MARKOWSKI et al. 2010) and rice (ZIELINSKA,
CENKOWSKI 2012).

In this paper, an artificial neural networks (ANN)
model with one and two hidden layers for the de-
termination of drying behaviours, such as MR and
DR, were developed. In the model, MR and DR are
the outputs, whereas air temperature, velocity and
time are the inputs. In this study, different ANN
topologies were tested to predict the moisture ra-
tio of terebinth fruits based on the drying time, air
temperature and air velocity. The training error was
associated with different hidden layers and ANN
configurations. It is evident that the learning ability
of the two-hidden layer networks was significantly
higher than that for one-hidden layer. This showed
that increasing the hidden layer number increased
the learning capability of the networks. Also, the
neuron number in the hidden layers had a signifi-
cant role in learning performance of an ANN mod-
el. The neuron numbers within hidden layers can be
varied based on the problem complexity and data
set. However, training of an ANN topology with the
best performance is the key to build an ANN struc-
ture to be able to predict outputs precisely.

Two aforementioned strategies were also used to
predict the DR and MR (Table 3). Both strategies,
as well as the learning algorithms of LM and BR,

G5
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Fig. 5. Predicted values of (a) energy consumption and (b) shrinkage using artificial neural networks versus experimental

values for testing data set
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Fig. 6. Drying rates versus drying time (min) at different temperatures and air velocities: (a) fix bed (0.81 m/s), (b) fix bed
(1.35 m/s), (c) semi fluid bed (2.08 m/s), (d) fluid bed (3.34 m/s) and (e) fluid bed (4.43 m/s)

were used for training of FFNN and CFNN net-
works. Several topologies were selected as the best
results from each network, training algorithm and
threshold functions.

The best results for FENN for DR and MR be-
longed to 3-4-3-2 topology and LOGSIG-TANSIG-
PURELIN threshold function with LM algorithm in
the first strategy (Table 3). This structure generated
MSE = 0.00047, R* = 0.9670 for DR, R* = 0.9965 for
MR, MAE =0.0015 for DR and MAE = 0.0142 for MR
and converged in 75 epochs. Also, the best results for
CENN for DR and MR consumption belonged to to-
pology of 3-3-3-2 with LM algorithm, threshold func-
tion of TANSIG and the first strategy. This composi-
tion output was MSE = 0.00014, MAE = 0.0014 for

DR, MAE = 0.0134 for MR, R* = 0.9730 for DR and
0.9965 for MR at 275 training epochs.

Fig. 7 compares the predicted values with the
desired output values on a plot of drying rate and
moisture ratio for kinetics analyses of fluidized bed
drying of terebinth fruit using the optimal static
ANN. These results imply that the designed ANN
model was properly capable of learning the rela-
tionship between the input and output parameters.
These results also confirm that unlike mathemati-
cal models, a properly trained neural network was
able to produce simultaneously more than one out-
put (Table 3). The optimized ANN model provided
satisfactory results over the whole set of values for
all of the dependent variables.

Table 3. Best selected topologies including training algorithm, different layers and neurons for FFNN and CENN for

DR and MR
2
Network aT;;?:E 1%1 Threshold function i\lno& Eif;/:;z MSE (DR;VIA]:;MR) (DR) X (MR) Epoch
TANSIG-LOGSIG-PURELIN  3-3-3-2 0.00069 0.0016 0.0161 0.9669 0.9951 103
M LOGSIG-TANSIG-PURELIN ~ 3-4-3-2 0.00047 0.0015 0.0142 0.9670 0.9965 75
FENN TANSIG 3-3-2-2 0.00175 0.0017 0.0181 0.9656 0.9940 198
BR TANSIG-PURELIN-TANSIG 3-4-3-2 0.00230 0.0021 0.0180 0.9628 0.9940 101
TANSIG 3-3-3-2 0.00014 0.0014 0.0121 0.9730 0.9965 275
M TANSIG-TANSIG-PURELIN  3-2-3-2 0.00042 0.0014 0.0134 0.9729 0.9956 317
CFN TANSIG 3-4-3-2 0.00059 0.0015 0.0144 0.9650 0.9960 65
BR TANSIG-LOGSIG-TANSIG 3-3-3-2 0.00204 0.0017 0.0176 0.9696 0.9933 26

DR - Drying rate, MR — Moisture ratio; for abbreviations see Table 2
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Fig. 7. Predicted values of (a)

drying rate and (b) moisture

ratio using artificial neural

networks versus experimental
¢ values for testing data set
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CONCLUSION

In this paper, terebinth fruit drying behaviour at
different air velocity of 0.81, 1.35, 2.08, 3.35 and
4.43 m/s and air temperatures of 40, 50, 60, 70 and
80°C was studied. The best results for D_ perdi-
tion by ANN approach belonged to CFNN net-
work, TANSIG threshold function and 2-3-1 topol-
ogy. This composition produced MSE = 0.000004,
R*=0.9932, MAE=3x10"""and STD, , .=6.15con-
verged in 12 epochs. The best results for CENN for
DR and MR consumption belonged to topology
of 3-3-3-2 with LM algorithm, threshold function
of TANSIG and the first strategy. This composi-
tion output was MSE = 0.00014, MAE = 0.0014 for
DR, MAE = 0.0134 for MR, R*> = 0.9730 for DR,
R* = 0.9965 for MR at 275 training epochs.

References

Aghbashlo M., Kianmehr M.H., Arabhosseini A., Nazghelichi
T. (2011): Modelling the carrot thin-layer drying in a semi-

64

0 0.2 0.4 0.6 0.8

industrial continuous band dryer. Czech Journal of Food
Sciences, 28: 531-537.

Alibas L. (2007): Energy consumption and colour charac-
teristics of nettle leaves during microwave, vacuum and
convective drying. Biosystems Engineering, 96: 495-502.

Amiri Chayjan R., Esna-Ashari M. (2010): Comparison between
artificial neural networks and mathematical models for esti-
mating equilibrium moisture content in raisin. Agricultural
Engineering International: CIGR Journal, 12: 158—166.

Amiri Chayjan R., Salari K., Barikloo H. (2012): Modeling
moisture diffusivity of pomegranate seed cultivars under
fixed, semi fluidized and fluidized bed using mathematical
and neural network methods. Acta Scitiuarum Polonorom
Technologia Alimentaria, 11: 137-149.

Amiri Chayjan R., Kaveh M. (2014): Physical parameters and
kinetic modeling of fix and fluid bed drying of terebinth seeds.
Journal of Food Processing and Preservation, 38: 1307—-1320.

Bala B.K., Ashraf M.A., Uddin M.A. Janjai S. (2005): Experi-
mental and neural network prediction of the performance
of the solar tunnel dryer for drying of jackfruit bulbs and
jackfruit leather. Journal of Food Process Engineering, 28:
552-566.



Res. Agr. Eng.

Vol. 61, 2015 (2): 55-65

Cakmak G., Yildiz C. (2011): The prediction of seedy grape
drying rate using a neural network method. Computers
and Electronics in Agriculture, 75: 132—138.

Chen D., Zheng Y., Zhu X. (2012): Determination of effective
moisture diffusivity and drying kinetics for poplar sawdust
by thermogravimetric analysis under isothermal condition.
Bioresource Technology, 107: 451-455.

Demuth H., Beale M., Hagan M. (2007): Neural network
toolbox 5. Natick, The MathWorks.

Duc L.A., Han J.W., Keum D.H. (2011): Thin layer drying
characteristics of rape seed (Brassica napus L.). Journal
of Stored Products Research, 47: 32—38.

Hashemi G., Mowla D., Kazemeini M. (2009): Moisture dif-
fusivity and shrinkage of broad beans during bulk drying in
an inert medium fluidized bed dryer assisted by dielectric
heating. Journal of Food Engineering, 92: 331-338.

Keeratipibul S., Phewpan A., Lursinsap C. (2011): Prediction
of coliforms and Escherichia coli on tomato fruits and let-
tuce leaves after sanitizing by using artificial neural net-
works. LW T-Food Science and Technology, 44: 130—138.

Lertworasirikul S., Tipsuwan Y. (2008): Moisture content and
water activity prediction of semi-finished cassava crackers
from drying process with artificial neural network. Journal
of Food Engineering, 84: 65-74.

Markowski M., Biatobrzewski 1., Modrzewska A. (2010):
Kinetics of spouted-bed drying of barley: Diffusivities
for sphere and ellipsoi. Journal of Food Engineering, 96:
380-387.

Mayor L., Sereno A.M. (2004): Modeling shrinkage during
convective drying of food material: a review. Journal of
Food Engineering, 18: 373-386.

Movagharnejad K., Nikzad M. (2007): Modelling of tomato
drying using artificial neural network. Computers and
Electronics in Agriculture, 59: 78—-85.

doi: 10.17221/56/2013-RAE

Nazghelichi T., Aghbashlo M., Kianmehr M.H. (2011): Op-
timization of an artificial neural network topology using
coupled response surface methodology and genetic algo-
rithm for fluidized bed drying. Computers and Electronics
in Agriculture, 75: 84-91.

Niamnuy C., Nachaisin M., Poomsaad N., Devahastin S.
(2012): Kinetic modelling of drying and conversion/deg-
radation of isoflavones during infrared drying of soybean.
Food Chemistry, 133: 946-952.

Perea-Flores M.]J., Garibay-Febles V., Chanona-Pérez J.J.,
Calder6n-Dominguez G., Méndez-Méndez J.V., Palacios-
Gonzélez E., Gutiérrez-Lopez G.F. (2012): Mathematical
modelling of castor oil seeds (Ricinus communis) drying
kinetics in fluidized bed at high temperatures. Industrial
Crops and Products, 38: 64—71.

Ruiz Celma A., Lépez-Rodriguez F., Cuadros Blazquez F.
(2009): Experimental modelling of infrared drying of
industrial grape by-products. Food and Bioproducts Pro-
cessing, 87: 247-253.

Vega-Galvez A., Ah-Hen K., Chacana M., Vergara J., Mar-
tinez-Monz6 J., Garcia-Segovia P., Lemus-Mondaca R,
Di Scala K. (2012): Effect of temperature and air velocity
on drying kinetics, antioxidant capacity, total phenolic
content, colour, texture and microstructure of apple (var.
Granny Smith) slices. Food Chemistry, 132: 51-59.

Zielinska M., Cenkowski S. (2012): Superheated steam dry-
ing characteristic and moisture diffusivity of distillers’ wet
grains and condensed distillers’ solubles. Journal of Food
Engineering, 109: 627-634.

Received for publication July 30, 2013
Accepted after corrections January 29, 2014

Corresponding author:

R. AMIRI CHAYJAN, Bu-Ali Sina University, Faculty of Agriculture, Department of Biosystems Engineering,

6517833131, Hamedan, Iran

phone: + 98 811 4424 366; fax: + 98 811 4224 012; e-mail: amirireza@basu.ac.ir

65



