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Abstract

Kaveh M., Chayjan R.A. (2015): Mathematical and neural network modelling of terebinth fruit under fluidized 
bed drying. Res. Agr. Eng., 62: 55–65.

The paper presents an application which uses Feed Forward Neural Networks (FFNNs) to model the non-linear behaviour 
of the terebinth fruit drying. Mathematical models and Artificial Neural Networks (ANNs) were used for prediction of 
effective moisture diffusivity, specific energy consumption, shrinkage, drying rate and moisture ratio in terebinth fruit. 
Feed Forward Neural Network (FFBP) and Cascade Forward Neural Network (CFNN) as well as training algorithms 
of Levenberg-Marquardt (LM) and Bayesian regularization (BR) were used. Air temperature and velocity limits were 
40–80°C and 0.81–4.35 m/s, respectively. The best outcome for the use of ANN for the effective moisture diffusivity 
appertained to CFNN network with BR training algorithm, topology of 2-3-1 and threshold function of TANSIG. 
Similarly, the best outcome for the use of ANN for drying rate and moisture ratio also appertained to CFNN network 
with LM training algorithm, topology of 3-2-4-2 and threshold function of TANSIG. 
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Terebinth (Pistacia atlantica L.) is an ancient and 
long-life tree with about 5 m height. Terebinth fruit 
is small and spherical-like with dark green colour. 
Kernel of terebinth fruit is similar to pistachio, but 
much smaller. Terebinth fruit is used in buttermilk 
process and animal oils and also it is used to make 
pickles. The harvested terebinth fruit has too much 
moisture (about 2.6 g H2O/g of dry matter (d.m.)), 
which causes fast spoilage of the fruit.

Drying is defined as a preservation method ap-
plied at industrial scale in order to minimize the 
biochemical, chemical, and microbiological spoil-
age by reducing the water quantity and the water 
activity of fruits and vegetables. Water is trans-
ferred by diffusion from the interior of food mate-
rial to the air-food interface and from there to the 
air stream by convection (Cakmak, Yildiz 2011).

Fluidized bed drying is one of the best methods in 
dehydration of high moisture products. This meth-
od can improve the quality of final product, such as: 
colour, taste and nutritional content (Alibas 2007). 
Moreover, this method can increase the moisture 
removal rate. Fluidization includes minimum fluid-
ized bed (semi-fluidized bed) and bubbling fluidized 
bed. Fixed bed is before minimum fluidized bed and 
transportation phenomenon occurs after bubbling 
fluidized bed (Amiri Chayjan et al. 2012). 

In practical applications drying process requires 
high energy input because of high latent heat of wa-
ter evaporation and relatively low energy efficiency 
of industrial dryers. Thus, one of the most impor-
tant challenges of the industrial dryers is to reduce 
the energy cost versus good quality of dried prod-
ucts (Nazghelichi et al. 2011).

55

Res. Agr. Eng. Vol. 61, 2015 (2): 55–65

doi: 10.17221/56/2013-RAE



Effective moisture diffusivity (Deff) is an impor-
tant index in modelling, designing and optimizing 
of a drying process. Effective moisture diffusivity 
value determines the mass transfer rate from prod-
uct in drying process (Hashemi et al. 2009).

One of the undesirable changes which occur si-
multaneously within moisture diffusion in drying 
process is the reduction of volume or shrinkage; 
modifying physical properties, heat and mass ex-
change area and in particular affecting the diffu-
sion coefficient of the materials. In general, shrink-
age occurs as a result of volume reduction due to 
evaporation of the moisture contained in the solid. 
Heating and loss of water cause stresses in the cel-
lular structure of the food and lead to changes in 
shape and decrease in dimensions (Mayor, Sere-
no 2004; Hashemi et al. 2009).

An artificial neural network (ANN) consists of 
processor units, namely neurons, which are con-
nected with each other in special arrangement. 
Every network includes some neurons in the input 
layer and in one or more hidden layers, and also 
one or more neurons in the output layer. Variations 
in neuron model and relationship between neu-
rons, and their weights determine algorithms and 
architectures of ANN. ANN has powerful learning 
ability and identifying and modelling ability for the 
complex non-linear relationships between the in-
put and the output of a system (Nazghelichi et 
al. 2011). Some workers applied ANNs for model-
ling of drying (Bala et al. 2005; Movagharnejad, 
Nikzad 2007; Lertworasirikul, Tipsuwan 
2008; Amiri Chayjan et al. 2012).

No study has been reported about moisture dif-
fusivity, shrinkage, specific energy consumptions, 
drying rate and moisture ratio of terebinth fruit by 
ANN method. The main goals of this study were 
artificial neural network modelling of effective 
moisture diffusivity, specific energy consumption, 
shrinkage, drying rate and moisture ratio of ter-
ebinth fruit. 

MATERIAL AND METHODS

Fresh terebinth (Pistacia atlantica L.) was har-
vested from the Sardasht forests in Iran and stored 
in a refrigerator at about 4°C. The initial moisture 
content of the terebinth was determined by dry-
ing of 30 g of sample in an oven at 70 ± 1°C. Ex-
periments were replicated three times. The initial 

moisture content of the terebinth was observed to 
be 2.6 g H2O/g d.m. The drying of terebinth fruit 
was investigated in a laboratory scale fluidized bed 
dryer (FBD) developed in the Bu-Ali Sina Universi-
ty, Hamedan, Iran (Amiri Chayjan, Kaveh 2014).

Five experimental points of drying were selected 
on fluidization curve (Fig. 1). At first, pressure drop 
of terebinth was determined at different air flow ve-
locities. Fan speed was gradually increased using an 
inverter (Vincker VSD2; ABB Co., Taipei, Taiwan) 
and parameters of pressure drop and air velocity 
were recorded using a multifunction measurement 
device (Standard ST-8897; Standard Instruments 
Co., Kowloon, Hong Kong). It consists in a differ-
ential digital manometer with ± 0.1 Pa accuracy and 
a vane type digital anemometer with ± 0.1 m/s ac-
curacy (Lutron AM-4202; Electronic Enterprise Co., 
Taipei, Taiwan). Max. value of static pressure drop 
(point C in Fig. 1) in fluidization curve of terebinth 
is known as min. fluidization point or semi fluid-
ized bed. Experimental points in fixed bed domain 
were determined with air velocities about 0.81 and 
1.35 m/s (points A and B in Fig. 1), also experimen-
tal points D and E with air velocities about 3.35 and 
4.43 m/s, respectively, was selected as a fluidized bed 
condition. Five bed conditions (fixed bed at 0.81 and  
1.35 m/s, semi fluidized bed at 2.08 m/s and fluid-
ized bed at 3.35 and 4.43 m/s) and five air tempera-
tures of 40, 50, 60, 70 and 80°C were applied in the 
drying experiments. Drying experiments were con-
ducted in three replications.

Fick’s second low of diffusion with sphere geom-
etry was used for computing the effective moisture 

Fig. 1. Fluidization curve of terebinth fruit and selected 
points for modelling
A, B – fixed bed (0.81 and 1.38 m/s); C – semi fluid bed 
(2.08 m/s); D, E – fluid bed (3.35 and 4.43 m/s)
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diffusivity. It was assumed that seed shrinkage after 
drying process is negligible and distribution of ini-
tial moisture is uniform. Fick’s equation for com-
puting effective moisture diffusivity of terebinth 
seeds is as follows:

  ln(MR)= ln Mt −Me

M0 −Me

⎛
⎝⎜

⎞
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	 (1)

where:
MR  – moisture ratio
Mt  – moisture content at any time (% d.b.)
Me  – equilibrium moisture content (% d.b.)
M0  – initial moisture content (% d.b.)
n  – number of terms taken into consideration
t  – drying time (s)
Deff  – effective moisture diffusivity (m2/s)
r  – radius of kernel (m)

Specific energy consumption (SEC) for terebinth 
drying was obtained using the thermodynamic 
models (Amiri Chayjan, Kaveh 2014).

Ten terebinth fruits were used for each shrinkage 
measurement. Shrinkage was expressed in terms of 
the percentage change of the volume of terebinth as 
compared with its original volume:

  Sb =
V0 −Vf( )
V0

× 100 	 (2)

where:
Sb 	– shrinkage (%)
V0 	– volumes of terebintht the beginning (before drying)
Vf 	–	volumes of terebinth at the end of each boiling 

experiment

The measurement of the sample volume was 
performed using a digital calliper (SKU 8372062; 
Pro Tool Point Inc., Lake Forest, USA) (Niamnuy  
et al. 2012).

The drying rate is approximately proportional 
to the difference in moisture content between the 
material being dried and equilibrium moisture 
content at the drying air state (Cakmak, Yaldiz 
2011). According to this definition, the drying rate 
(DR) of terebinth samples is usually determined  
using:

  DR =
Mt+dt −Mt( )

dt
	 (3)

where:
Mt  – moisture content at any time (% d.b.)
t  – drying time (min)

The most common types of ANN are Feed and 
Cascade forward neural networks. These networks 
are applied to predict outputs of new unknown pat-
terns. Furthermore, in this study, these networks 
as well as two learning algorithms were utilized. 
Feed Forward Back Propagation (FFBP) consists of 
input, hidden and output layers (Amiri Chayjan, 
Esna-Ashari 2010). Back propagation (BP) learn-
ing algorithm was used to train this network. Dur-
ing training by BP algorithm, layer weights were 
updated at the first epoch. The weight coefficients 
were updated by learning rules and weight values. 
During training this network, calculations were 
conducted from input to output and error values 
were then propagated to prior layers. Cascade 
Forward Back Propagation (CFBP) operation us-
ing the BP algorithm for weights updating is simi-
lar to FFBP network, but the main feature of this 
network is that each layer of neurons is connected 
to all previous neurons layers. Two algorithms in-
cluding Levenberg-Marquardt (LM) and Bayes-
ian regulation (BR) back propagation algorithms 
were used for network training (Keeratipibul  
et al. 2011). 

Applying the two inputs in all experiments, the 
effective moisture diffusivity, specific energy con-
sumption and shrinkage values were calculated for 
different conditions. In the first type networks, two 
neurons in input layer (air velocity and tempera-
ture) and one neuron in output layer (Deff, SEC or 
shrinkage) were considered. Also with applying 
three inputs (air velocity, air temperature and dry-
ing time) in all experiments, the DR and MR values 
were computed for different conditions. 

Figs 2 and 3 show the input and output param-
eters for considered neural network topologies. 
Levels and boundaries of input parameters are 
presented in Table 1. Matlab software (The Math-
Works Inc., Natick, USA) with neural network 
toolbox was used in this study. 

Table 1. Input parameters for artificial neural networks 
and their boundaries for prediction of effective moisture 
diffusivity, specific energy consumption and shrinkage of 
terebinth, drying rate and moisture ratio of terebinth

No. of levelsMax.Min.Parameter

58040Air temperature (°C)

54.430.81Air velocity (m/s)

1474203Time (min)
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Optimized number of layers and neurons for var-
ious topologies was selected by increasing method. 
With this approach, when the output was trapped 
into the local minimum, new neuron and layer 
were gradually added to the network. Also differ-
ent threshold functions were tested to achieve the 
optimized topology (Demuth et al. 2007):

  Yj = Xi                                               (PURELIN)	 (4)

  Yj =
2

1+ exp(−2Xj( )−1 	 (TANSIG)	 (5)

  Yj =
1

1+ exp −Xj( ) 	 (LOGSIG)	 (6)

where:
Yj 	– jth neuron output
Xj 	– sum of weighed inputs for each neuron in jth layer 

and computed according to Eq. (7):

  Xj = Wi j ×Yi + bj
i=1

m

∑ 	 (7)

where:
m  – number of output layer neurons
Wij  – weight coefficient between ith and jth layers
Yi  – ith neuron output 
bj  – bias of jth neuron for FFBP and CFBP networks

Experimental data of 40, 50, 60, 70 and 80°C were 
selected for training network with suitable topol-
ogy and training algorithm. About 75% of all data 
were randomly selected for training network with 
suitable topology and training algorithm. 

The index of mean square error (MSE) is deter-
mined to minimize the training error (Demuth 
et al. 2007). Also the supplementary indices of de-
termination coefficient (R2), root mean square er-
ror, mean absolute error (MAE) and standard er-

Fig. 3. Artificial neural net-
work topology of DR and MR 
of terebinth fruit
DR – drying rate; MR – mois- 
ture ratio, N – number of neu-
rons; p – number of neurons 
in the layer; m – number of 
output layer neurons 

Fig. 2. Artificial neural net-
work topology of Deff, SEC or 
shrinkage of terebinth fruit
N – number of neurons; Deff – 
effective moisture diffusivity; 
SEC – specific energy con-
sumption
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ror (STDMAE) were used to optimize the network 
from prior stage (Amiri Chayjan, Kaveh 2014). 
To increase the processing velocity and accuracy 
of networks, the input data were normalized at 
boundary of [0, 1].

RESULTS AND DISCUSSION

Plotting the logarithm of MR values versus the 
drying time gave the values of Deff for different tem-
peratures together with regression coefficient of 
determination (R2). From the results, Deff increased 
with the increasing drying air temperature. The 
values of Deff ranged from 10–9 to 10–11 m2/s (Ve-
ga-Gálvez et al. 2012). The values of Deff for ter-
ebinth ranged from 1.1 × 10–10 to 1.26 × 10–10 m2/s.  
Several investigations carried out on fruits and 
vegetables under similar temperature and veloc-
ity conditions showed Deff values to lie between  
3.22–15.3 × 10–9 m2/s for apple (Vega-Gálvez 
et al. 2012), 1.72–3.31 × 10–11 m2/s for rape seed 
(Duc et al. 2011), 8.21 × 10−10 to 2.61 × 10−9 m2/s 
for castor oil seeds (Perea-Flores et al. 2012). The 
following model is proposed to describe Deff of the 
terebinth fruit under fluidized bed dryer:

  Deff = 0.55 × 10–11v + 0.22 × 10–12Tc + –0.39 × 10–9

  R2 = 0.9692 	 (13)

where:
v  – airflow velocity (m/s)
Tc – air temperature (°C) 

Two networks of FFNN and CFNN were ap-
plied to map between inputs and outputs of pat-
terns. Different compositions of threshold func-
tions were tested in layers. Several topologies 
were used and the best results were recommended 
from each training algorithm, threshold function 
and network (Table 2). The best results belonged 
to CFNN network, TANSIG threshold function 
and 2-3-1 topology. This composition produced 
MSE = 0.000004, R2 = 0.9932, MAE = 3 × 10−11 and  
STDMAE = 6.15 converged in 12 epochs. The R2 of 
optimized ANN is plotted in Fig. 4. This trend is 
identical to those reported in studies on agriculture 
and food plants (Aghbashlo et al. 2011; Amiri 
Chayjan et al. 2012).

Fig. 4 indicates the desired output values versus 
the predicted values on a plot of moisture diffusiv-

ity for kinetics analyses of fluidized bed drying of 
terebinth fruit using the optimized ANN.

It was observed that shrinkage of terebinth fruit 
increased with an increase in the temperature 
and air velocity. Max. shrinkage value (72.2%) oc-
curred at air temperature of 80°C and air velocity of 
4.43 m/s. Min. shrinkage (60.92%) was obtained at 
air temperature of 40°C and air velocity of 0.81m/s. 
Shrinkage percentage (Sb) of terebinth fruit under 
different bed conditions is presented in the follow-
ing model:

  Sb = 0.37v + 0.01Tc + 0.60 × 10–2Tcv + 1.02
  R2 = 0.9684	 (14)

where:
Tc  – air temperature
v  – airflow velocity (m/s)

For all bed conditions, the SEC decreased as drying 
air temperature was increased. Max. value of SEC 
(1246.4 MJ/kg) was obtained at fluid bed condition 
with air velocity of 4.43 m/s and air temperature 
of 40°C, while the min. value of EC (130.2 MJ/kg)  
was calculated at fix bed condition with air velocity 
of 0.81 m/s and air temperature of 80°C. Specific 
energy consumption of terebinth fruit under dif-
ferent bed conditions is presented in the following 
model:

  SEC = 28.05 × 103v + 12.49 × 102Tc + 4.55 × 102Tcv +
             + 76.99 × 103

  R2 = 0.9853	 (15)

where:
Tc  – air temperature
v  – airflow velocity (m/s)

Two strategies of similar and various threshold 
functions for all layers were utilized to study the 
effect of different threshold functions on FFNN and 
CFNN outputs (Table 2). Both strategies, as well as 
learning algorithms of LM and BR, were used for 
training of FFNN and CFNN networks. Several 
topologies were selected as the best results from 
each threshold function, training algorithm and 
network.

The best results for FFNN for shrinkage (Table 2) 
belonged to 2-3-3-1 topology and TANSIG-LOG-
SIG-TANSIG threshold function with LM algo-
rithm in the first strategy. This structure generated 
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Table 2. Best selected topologies including training algorithm, different layers and neurons for FFNN and CFNN for 
effective moisture diffusivity, shrinkage and specific energy consumption

EpochSTDMAEMAER2MSENo. of layers  
and neuronsThreshold functionTraining 

algorithmNetwork

Effective moisture diffusivity

198.116.17 × 10–110.96010.00092-3-2-1TANSIG-PURELIN-TANSIG
LM

FFNN
1010.574.95 × 10–110.98760.000012-3-1TANSIG

1412.256.99 × 10–110.95010.003342-3-3-1LOGSIG-PURELIN-TANSIG
BR

399.576.44 × 10–110.95140.002212-5-1TANSIG

107.13.48 × 10–110.98720.000122-3-3-1TANSIG-LOGSIG-TANSIG
LM

CFNN
126.153.00 × 10–110.99320.0000042-3-1TANSIG

178.114.87 × 10–110.97650.00132-4-3-1TANSIG-LOGSIG-TANSIG
BR

198.394.09 × 10–110.98020.00072-5-1TANSIG

Shrinkage

100.900.2420.97740.001182-3-3-1TANSIG-LOGSIG-TANSIG
LM

FFNN
1050.640.3810.97690.001892-3-2-1LOGSIG-PURELIN-TANSIG

140.850.5200.95480.006612-2-4-1TANSIG
BR

190.210.3910.97050.002162-5-1TANSIG

80.740.4120.98870.000872-3-4-1TANSIG-PURELIN-TANSIG
LM

CFNN
110.640.1360.99170.000012-4-1TANSIG

90.570.3220.98060.001222-4-3-1TANSIG- TANSIG-PURELIN
BR

100.650.3780.97610.001762-5-1TANSIG

Specific energy consumption

338.0742.570.98270.001142-4-1TANSIG
LM

FFNN
117.6644.430.97340.004012-3-4-1PURELIN -LOGSIG-TANSIG

238.9745.310.97800.003342-2-3-1TANSIG
BR

11311.1247.540.96670.005162-5-1TANSIG

69.4641.320.98550.000472-2-1TANSIG
LM

CFNN
1111.5446.950.97690.003512-4-3-1TANSIG-PURELIN-TANSIG

9016.759.870.92210.006543-3-4-1TANSIG
BR

1015.8961.830.88850.021142-4-1TANSIG

FFNN – Feed Forward Neural Network; CFNN – Cascade Forward Neural Network; LM – Levenberg-Mar-
quardt; BR – Bayesian regulation; MSE – mean square error, R2 – determination coefficient; MAE – mean 
absolute error, STDMAE – Standard deviation of mean absolute error; Epoch – learning cycle

MSE = 0.00118, R2 = 0.9774 and MAE = 0.242 con-
verged in 10 epochs. The best results for FFNN for 
specific energy consumption (Table 2) belonged to 
2-3-4-1 topology and PURELIN-LOGSIG-TANSIG 
threshold function with LM algorithm in the first 
strategy. This structure generated MSE = 0.00401, R2 
= 0.9734 and MAE = 44.43 converged in 11 epochs.

The best results for CFNN for shrinkage be-
longed to topology of 2-4-1 with LM algorithm, 
threshold function of TANSIG and the first strat-
egy. This composition output was MSE = 0.00001,  
MAE = 0.136 and R2 = 0.9917 at 11 training ep-
ochs. Also, the best results for CFNN for spe-
cific energy consumption belonged to topology of  
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2-2-1 with LM algorithm, threshold function of 
TANSIG and the first strategy. This composition 
output was MSE = 0.00047, MAE = 41.32 and  
R2 = 0.9855 at 11 training epochs. 

Fig. 5 compares the desired output values with 
the predicted values on a plot of shrinkage and 
energy consumption for kinetics analyses of fluid-
ized bed drying of terebinth fruit using the optimal 
static ANN.

Fig. 6 illustrates the drying rate versus drying 
time at drying temperatures of 40, 50, 60, 70 and 
80°C. After sample heating at the initial period, 
the drying rate reached its max. value and then the 
product dried at the falling rate period. Mass trans-
fer takes place initially at the sample surface and 
loses relevance at subsequent stages. After surface 
drying, the moisture diffusion process becomes 
the most important factor. However, three differ-
ent drying periods observed during the experiment 

performed at 40°C is an exception to such ten-
dency. An initial heating period was followed by a 
constant rate period, and finally by the falling rate 
period.

These experimental results are similar to some 
others published in literature, relating to drying 
experiments concerning vegetables and agricul-
tural products; for instance grape (Ruiz Celma et 
al. 2009), poplar sawdust (Chen et al. 2012), bar-
ley (Markowski et al. 2010) and rice (Zielinska, 
Cenkowski 2012).

In this paper, an artificial neural networks (ANN) 
model with one and two hidden layers for the de-
termination of drying behaviours, such as MR and 
DR, were developed. In the model, MR and DR are 
the outputs, whereas air temperature, velocity and 
time are the inputs. In this study, different ANN 
topologies were tested to predict the moisture ra-
tio of terebinth fruits based on the drying time, air 
temperature and air velocity. The training error was 
associated with different hidden layers and ANN 
configurations. It is evident that the learning ability 
of the two-hidden layer networks was significantly 
higher than that for one-hidden layer. This showed 
that increasing the hidden layer number increased 
the learning capability of the networks. Also, the 
neuron number in the hidden layers had a signifi-
cant role in learning performance of an ANN mod-
el. The neuron numbers within hidden layers can be 
varied based on the problem complexity and data 
set. However, training of an ANN topology with the 
best performance is the key to build an ANN struc-
ture to be able to predict outputs precisely.

Two aforementioned strategies were also used to 
predict the DR and MR (Table 3). Both strategies, 
as well as the learning algorithms of LM and BR, 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0 1 2 3 4 5 6 

St
at

ic
 p

re
ss

ur
e 

(k
Pa

) 

Air velocity (m/s) 

R² = 0.9932 

0 
2E-10 
4E-10 
6E-10 
8E-10 
1E-09 

1.2E-09 
1.4E-09 

Ex
pe

ri
m

en
ta

l d
at

a 

Predicted data 

Fig. 4. Predicted values of effective moisture diffusivity 
using artificial neural networks versus experimental values 
for testing data set
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were used for training of FFNN and CFNN net-
works. Several topologies were selected as the best 
results from each network, training algorithm and 
threshold functions.

The best results for FFNN for DR and MR be-
longed to 3-4-3-2 topology and LOGSIG-TANSIG-
PURELIN threshold function with LM algorithm in 
the first strategy (Table 3). This structure generated 
MSE = 0.00047, R2 = 0.9670 for DR, R2 = 0.9965 for 
MR, MAE = 0.0015 for DR and MAE = 0.0142 for MR 
and converged in 75 epochs. Also, the best results for 
CFNN for DR and MR consumption belonged to to-
pology of 3-3-3-2 with LM algorithm, threshold func-
tion of TANSIG and the first strategy. This composi-
tion output was MSE = 0.00014, MAE = 0.0014 for  

DR, MAE = 0.0134 for MR, R2 = 0.9730 for DR and 
0.9965 for MR at 275 training epochs.

Fig. 7 compares the predicted values with the 
desired output values on a plot of drying rate and 
moisture ratio for kinetics analyses of fluidized bed 
drying of terebinth fruit using the optimal static 
ANN. These results imply that the designed ANN 
model was properly capable of learning the rela-
tionship between the input and output parameters. 
These results also confirm that unlike mathemati-
cal models, a properly trained neural network was 
able to produce simultaneously more than one out-
put (Table 3). The optimized ANN model provided 
satisfactory results over the whole set of values for 
all of the dependent variables.
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Fig. 6. Drying rates versus drying time (min) at different temperatures and air velocities: (a) fix bed (0.81 m/s), (b) fix bed 
(1.35 m/s), (c) semi fluid bed (2.08 m/s), (d) fluid bed (3.34 m/s) and (e) fluid bed (4.43 m/s)

(e)

Table 3. Best selected topologies including training algorithm, different layers and neurons for FFNN and CFNN for 
DR and MR

Epoch
R2 MAE

MSENo. of layers 
and neuronsThreshold functionTraining 

algorithmNetwork
(MR)(DR)(MR)(DR)

1030.99510.96690.01610.00160.000693-3-3-2TANSIG-LOGSIG-PURELIN
LM

FFNN
750.99650.96700.01420.00150.000473-4-3-2LOGSIG-TANSIG-PURELIN

1980.99400.96560.01810.00170.001753-3-2-2TANSIG
BR

1010.99400.96280.01800.00210.002303-4-3-2TANSIG-PURELIN-TANSIG

2750.99650.97300.01210.00140.000143-3-3-2TANSIG
LM

CFNN
3170.99560.97290.01340.00140.000423-2-3-2TANSIG-TANSIG-PURELIN

650.99600.96500.01440.00150.000593-4-3-2TANSIG
BR

260.99330.96960.01760.00170.002043-3-3-2TANSIG-LOGSIG-TANSIG

DR – Drying rate, MR – Moisture ratio; for abbreviations see Table 2
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CONCLUSION

In this paper, terebinth fruit drying behaviour at 
different air velocity of 0.81, 1.35, 2.08, 3.35 and 
4.43 m/s and air temperatures of 40, 50, 60, 70 and 
80°C was studied. The best results for Deff perdi-
tion by ANN approach belonged to CFNN net-
work, TANSIG threshold function and 2-3-1 topol-
ogy. This composition produced MSE = 0.000004,  
R2 = 0.9932, MAE = 3 × 10−11 and STDMAE = 6.15 con-
verged in 12 epochs. The best results for CFNN for 
DR and MR consumption belonged to topology 
of 3-3-3-2 with LM algorithm, threshold function 
of TANSIG and the first strategy. This composi-
tion output was MSE = 0.00014, MAE = 0.0014 for 
DR, MAE = 0.0134 for MR, R2 = 0.9730 for DR,  
R2 = 0.9965 for MR at 275 training epochs.
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