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Abstract

Bulgakov V., Melnik V., Mohammed A.F.M.A, Korenko M., Kollárová K. (2016): Methodology of processing 
the results of field experiment monitoring of the technological procedure of sowing. Res. Agr. Eng., 62: 30–36.

The non-uniformity of distribution of seeds sown in a row influences their productivity. To analyse and eliminate the 
causes of non-uniformities, the straight motion of coulters must be separated from generation of causes, i.e. the devia-
tion of seeds from an ideal position on the coulter trajectory. A partial acceleration method can be effectively used to 
recover the coulter trajectory. It is based on the study of machine parts dynamics by measuring the three-dimensional 
projection of acceleration and its characteristic points. Fourier methods are used for approximation or interpolation 
of experimental data. The trajectory of a point is obtained by double integration of a Fourier series. Noise generation 
in acceleration measurement can be solved by smoothing with reasonable intensity. Also double integration leads to 
smoothing, the variability of the number of points participates in assessing the degree of harmonic distortion of recon-
structed trajectory, based on which the required smoothing limit can be set. The method may be used for monitoring 
the farm machines dynamics based on the partial acceleration method. 

Keywords: coulter trajectory; acceleration; amplitude; curve; Fourier transform

The non-uniform distribution of plant seeds in 
longitudinal direction (Onal et al. 2012) and dis-
tribution in depth (Karayel, Özmerzi 2007; Al-
tikat 2012; Seidi 2012) significantly influences 
production (Korucu, Arslan 2009; Kurylo et al. 

2013). In order to find and eliminate the causes of 
such deviations, researchers have developed suit-
able laboratory research methods (Önal, Önal 
2009; Navid et al. 2011). However, many problems 
remain opened. In the study of lateral deviations of 
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plants, there is an unaddressed question about the 
position of the row centre line. The deviation of the 
row centre line contributes to errors in estimating 
the distribution of seeds or plants along the row. 
The sowing depth of seeds can be relatively accu-
rately estimated after measuring germinated parts 
of plants (Melnik 2012), but the effect of coulter 
oscillations on measurement result cannot be dis-
tinguished.

The above-mentioned problem underlies the 
role of separating three-dimensional deviations of 
plants due to errors of ideal sowing on the coulter 
trajectory, from the non-linearity of the trajectory 
alone. The solution of such task enables including 
the most important factors, assessing their rela-
tionship, and determining relevant technical and 
technological means of their elimination. 

A GPS technology can be used to recover the 
coulter trajectory. It is an effective method, but is 
now used especially for monitoring the trajectory 
of the machine as a whole, rather than its individual 
parts (Backman et al. 2012; Fleischmann et al. 
2013; Jingtao, Taochang 2014). The method of 
partial acceleration appears to be an alternative and 
effective supplement to GPS navigation, the imple-
mentation of which increases the overall produc-
tivity of work (Žitňák et al. 2014). 

MATERIAL AND METHODS

Formulation of research problems. The trajec-
tory of a point (coulter centre of gravity in this case) 
can be obtained by the method of partial accel-
eration through double integration of interpolated 
(harmonised) measured data. A special emphasis is 
put on creating the mathematical model of sowing, 
accompanying noise measurement, and formulat-
ing approaches to determine initial conditions.

Further development of the designed sowing 
model requires solving the problem of construct-
ing the coulter trajectory (analytical illustration), 
which is considered more than projection on the 
horizontal plane of the coordinate system 0xy, i.e. 
as the function y = y(x).

Current situation of issues. The study of Mel-
nik and Mohammed (2012) contains a mathe-
matical model of sowing based on presenting the 
horizontal projection y = y(x), in general case, the 
three-dimensional line of the row of sown plants, 
as a sum of three curves:

y(x)= 1
2

Ak
( y ) cos 2π

Lk
( y ) x +ϕk

( y )⎛
⎝⎜

⎞
⎠⎟k=0

3

∑ + y0 	  (1)

where: 
x 	 – longitudinal coordinate of a row line 

point (identical with ideal direction)
y 	 – current deviation from the ideal curve 

in straight row
Ak

(y), Lk
(y), φk

(y) 	– amplitude, wavelength and initial phase 
of the kth curve

y0 	 – shift of the straight ideal row with 
respect to the axis 0x of the coordinate 
system

The numerical parameters in Eq. (1) are select-
ed from the set of limits determined in a pseudo-
random manner and, besides that, using the Monte 
Carlo method (Graham, Talay 2013), the model 
of probable underlaps, overlaps, seed germination, 
three-dimensional deviations of germinated seeds, 
and a relative trajectory of coulter motion. 

Eq. (1) cannot correspond to any actual trajectory 
of the coulter; therefore, the above-mentioned prob-
lem remains unsolved. Presenting the relationship as 
trigonometric series is further monitored by us.

The research problem in the experiment can be 
solved through direct measuring of the coordinates 
(x, y), by examining the tracks of the coulter that re-
mained on the field surface, or using GPS coordinates 
during the drive without using the seeder. The first 
method cannot be performed in economic terms. It is 
labour intensive and requires plenty of time, whereby 
the field of testing cannot be used for other purposes. 
The second method, as indicated herein above, has 
also many technical problems concerning the place-
ment of special equipment, which corresponds to the 
required actual measuring point, i.e. the coulter.

The most appropriate method how to recover 
the function y = y(x) is to compare the method of 
partial acceleration, to estimate the measured three 
Cartesian acceleration components of the point 
(x, y) of the coulter centre of gravity, and further 
mathematical processing of measurement results. 
To perform this, we recommend the following se-
quence of steps. The following algorithm is pro-
posed for this purpose.
– Parametrical displaying of the function y = y(x):

x = x(t), y = y(t) 	 (2) 

where:
t – time
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– Measurement of time series, congruence with the 
coordinate axes 0x and 0y of axial (ax) and lateral 
(ay) horizontal acceleration components of the 
coulter centre of gravity: 

t = t(k) = tk ∈ {t0, t1, ...,tN}; k = 0, 1, …, N	 (3) 

aα = aα(k) = aαk ∈ {aα0, aα1, ...,aαN}; 

        k = 0, 1, …, N; α ∈ {x, y}	  (4)

where:
α	 – index defining acceleration ax (at α = x) or ay (at α = y)
N	– older element of time series

N = K – 1	  (5)

is determined by means of number of measure-
ments (K) (elements of time series):

K = T
Δt

+1 	  (6)

where: 
T	 –	time of measurement
Δt	 –	technically taken from long-term time interval 

between measurements 

–	 Presenting acceleration ax = ax(t) and ay = ay(t) 
in the form of the finite Fourier distributions 
(Privalov 2012):

aα(t )= Ai
(aα ) cos 2π

T
it +ϕi

(aα )⎛
⎝⎜

⎞
⎠⎟i=0

n

∑ ; 
         

            T ∈ [0, T]; α ∈ {x, y}	  (7)

where: 
n 	 – max. number of distribution elements speci-

fied later
Ai

(aα), φaα) 	– amplitude and initial phases of distribution

–	 Determination of distribution parameters (Ai
(aα) 

and φi
(aα)) (Eq. 7).

In the results of direct discrete Fourier transfor-
mation (RAO et al. 2010) from ordered set (Eq. 4), 
we obtain the complex meaning K = N + 1:

!aαi = aαk exp
− j2π
K

ik⎛
⎝⎜

⎞
⎠⎟k=0

N

∑ ; 

         i = 0, 1, …, N; α ∈ {x, y}	 (8)

where: 
j – variable
ãαi – complex number
aαk – output of the measured data
i – numeral series
k – serial number in the series

Every complex ãαi will be written as the sum of 
real Ri and variable Ii:

ãαi = Ri + Ii	 (9)

and the quantities are defined (Rao et al. 2010):

!Ai =
1
K

Ri
2 + Ii

2 , !ϕi =arctg
Ii
Ri

⎛
⎝⎜

⎞
⎠⎟

	  (10)

where:
Ãi  – complex number
ϕ   – complex number

Then, based on the values in series Ãi and ϕ~, and 
with respect to an image effect of direct discrete 
Fourier transformation (Rao et al. 2010), we obtain 
the required parameters of distribution (Eq. 7):

n ≤ N/2, A0
(aα ) = !A0 , AN /2

(aα ) = !AN /2 	 (11)

Ai
(aα ) = 2 !Ai , i = 1, 2, …, N/2 – 1	 (12)

ϕi
(aα ) = !ϕi ,  i = 0, 1, …, N/2	 (13)

Now all the parameters of distribution (7) are de-
termined.
– By recovering the axial νx(t) and lateral νy(t) hori-

zontal components of the linear speed of coulter 
centre of gravity as a function of time t, we per-
form the integration of expressions (Eq. 7):

vα(t )= !vα(t )+Cvα ; T ∈ [0, T]; α ∈ {x, y}	 (14)

where:

!vα(t )= A0
(aα ) cosϕ0

(aα )t + Ai
(aα ) T

2πi
sin 2π

T
it +ϕi

(aα )⎛
⎝⎜

⎞
⎠⎟i=1

n

∑
	

(15)

and integration constant Cνα is generally deter-
mined from:

vα(t0 )= !vα(t0 )+Cvα 	 (16)

therefore, high accuracy of measuring the initial 
speed να(t0) is required.

If Cνy is constant, this problem can be eliminated 
taking account of the fact that average speed νy in 
time T must be equal to zero; therefore, Cνy will be 
determined from:

vy(tk )
k=0

N

∑ = !vy(tk )+Cvy⎡⎣ ⎤⎦
k=0

N

∑ = 0 	 (17)
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where:

Cvy = − 1
K

!vy(tk )
k=0

N

∑ = 0 	 (18)

To calculate the constant of integration Cνx and 
to reduce the requirement for precise measure-
ment of the axial component of speed νx:

vx = vx(k )= vxk ∈{vx0 ,vx1, ...,vxN } ; k = 0, 1, …, N 	 (19)

where every k corresponds to time tk (Eq. 3), it is 
necessary to use an average value:

vx =
1
K

vxk
i=0

N

∑ 	 (20)

and the condition:

1
K

!vx(tk )+Cvx[ ]
k=0

N

∑ = vx 	 (21)

wherefrom:

Cvx = vx −
1
K

!vx(tk )
k=0

N

∑ 	 (22)

– The recovery of parametric dependences x(t) and 
y(t) (2) is determined by integration:

α(t )= vα(t )dt = !vα(t )+Cvα[ ]dt∫∫ , α ∈ {x, y}	 (23)

Thus, we obtained:
α(t )= !α(t )+Cvαt +Cα , α ∈ {x, y}	  (24)

where:

!α(t )= 1
2
A0

(aα ) cosϕ0
(aα )t 2 − Ai

(aα ) T
2πi

⎛
⎝⎜

⎞
⎠⎟
2

× cos 2π
T

it +ϕi
(aα )⎛

⎝⎜
⎞
⎠⎟i=1

n

∑

	 (25)          !α(t )= 1
2
A0

(aα ) cosϕ0
(aα )t 2 − Ai

(aα ) T
2πi

⎛
⎝⎜

⎞
⎠⎟
2

× cos 2π
T

it +ϕi
(aα )⎛

⎝⎜
⎞
⎠⎟i=1

n

∑

and integration constant:

Cα = 0, α ∈ {x, y}	 (26)

To complete the algorithm of recovery, the para-
metric expression (2) is the sought function y = y(x).

RESULTS 

Analysis of the obtained solution

In practice, the measurement of acceleration axk, 
ayk Eq. (4) and speed νxk Eq. (19) is not technically 
demanding, but is accompanied by an inevitable 
‘admixture’ of the Gaussian noise. Such being the 
case, Fourier methods include the use of smooth-
ing procedures (Rao et al. 2010). In the process 
of presenting interpolated data using finite series 
Eq. (7), selected n is lower than the maximum,  
max{n} = N/2, i.e.:

n << N/2	 (27)
In this way, high-frequency curves caused by the 

presence of Gaussian noise are excluded from the 

Fig. 1. Smoothing of discrete data 
using the Fourier method: (a) with-
out Gaussian noise, (b) with noise 
1 – defined curve; 2 – interpolation; 
3 – approximation
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assessment. Fig. 1 illustrates an approximation ex-
ample of generating discrete data by mathematical 
methods. The defined curve y = y(x) (curve 1) is a 
sum of three curves.

The first case (Fig. 1a) illustrates the number of 
experimental data yi, and values are obtained for  
xi = i, where i = 0, 1, …, N = 128. The pairs of values 
(xi, yi) are depicted by dots. Then, discrete data were 
interpolated (described by the above-mentioned 
Fourier methods), when smoothing is not per-
formed and all 64 harmonic values are employed 
(curve 2; n = N/2). In case of smoothing (curve 3, 
approximation), only low-frequency harmonic val-
ues I = 0, 1, …, n = 32 are employed.

Fig. 1a shows a high convergence level of recov-
ered curves 1 and 2, which are distinguishable at 
the borders of the test interval only, and a high level 
of smoothing (curve 3), which has led to a complete 
filtering of a high-frequency component of defined 
curve 1.

This example illustrates well the possibilities of 
this method; however, taking account of present 
noise, problems may arise in the practical applica-
tion of experimental data.

Fig. 1b shows the same case as in Fig. 1a, but the 
pair of values (xi, yi) was obtained in the presence 
of the Gaussian noise. The amplitude of standard 

deviation exceeds the amplitude of high-frequency 
harmonic curves y = y(x). As can be seen, the recon-
struction of curve 2 still perfectly interpolates ex-
perimental data, but does not correspond to curve 
1 defined in advance. Smoothed curve 3 approxi-
mates relatively well the individual data points, but 
resembles to the given curve 1 only a little. That 
is the problem of selecting values n. If we imagine 
that the defined curve is unknown, then there are 
practically no criteria for determining values n.

However, the described problems do not ap-
pear in many experiments. That applies particu-
larly to cases when there is practically no noise in 
measurements. For example, Fig. 2 illustrates the 
approximation of experimental data obtained by 
measuring the angle α of the coulter during sowing. 
Only 2% of the first harmonic curves are employed  
(n = 2N/100), and approximation results indicate 
that initial data (broken line 1) are practically in-
separable from approximated curve 2. Their con-
gruence level can be improved if the number n of 
harmonic curves increases.

With a significantly higher probability arises the 
problem with interpreting too noised experimental 
data, e.g. the Fourier method applied to smoothing 
the horizontal component ay (m/c2) of acceleration 
influencing the coulter during seeding, as shown 

Fig. 2. Approximation of experi-
mental data: angle α vs time t 
1 – sequence of points from 
experimental data; 2 – approxi-
mation by the Fourier method

Fig. 3. Approximation of experi-
mental data by the Fourier method: 
horizontal component ay of coulter 
centre of gravity acceleration vs 
time t
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in Fig. 3. The reasons for noise generation are vi-
brations of the working mechanism, the over-slip 
of driving wheels, field micro-relief particularities, 
and a weak vibration of the seeder attached to the 
tractor. Smoothing was performed with respect to 
the fact that the first 50 curves (n = 50) were em-
ployed from 602 possible. As the value n is not jus-
tified, this graph is suitable for adopting a qualita-
tive approach to prove the patterns.

Fig. 4 presents the results of functional depend-
ence of lateral deviation y(t) Eq. (24) of the coulter 
on time based on measuring horizontal accelera-
tion. Source data are equal to those shown in Fig. 3: 
K = 1,205 (total number of measurements), T = 12 s 
(monitored period of time). Curve 1 corresponds 
to the recovered function ay(t) at n = 50 curves em-
ployed, and curve 2 is y(t) where all n = 602 curves 
are employed.

The recovered function y = y(t) Eqs (24–26) of 
parametric representation Eq. (2) of the trajectory 
y = y(x) corresponds qualitatively to the actual tra-
jectory of the coulter.

The particularity of this method is in automatic 
smoothing, multiplication (T/2πi)2 in Eq. (25). The 
higher the value i of the curve, the higher the de-
nominator, and therefore the lower the influence of 
amplitude Ai

(aα) of the resulting value x(t) or y(t). It 
is not difficult to verify in practice that a ten times 
decrease of n from max{n} = N/2 = 602 does not 
lead to a notable distortion of the dependence x(t) 
or y(t).

The last fact appears as an indirect consequence. 
Firstly, it is used to verify the adequacy of the theo-
ry of experiment, and secondly, to justify the mini-
mum quantity n, and to define the required level of 
the experimental data smoothness by Eqs (4 and 7).  
It is for those who use the method of partial ac-
celeration to explore other tasks of the dynamics 
of farm machines and originally did not expect the 

recovery of parametric dependences x = x(t) or  
y = y(t) Eq. (2) of the trajectory y = y(x). This cri-
terion should be implemented in the process of 
measuring the actual size of oscillation of the row 
trajectory Δy, and it is necessary to compare its 
theoretical value that is obtained after recovery of 
dependence y(t) (25). It is reasonable to believe that 
the minimum n at which the difference between 
the theoretical and experimental values Δy will be 
within the permissible limit. 

CONCLUSION

– Solving the problem of recovery of the coulter 
trajectory based on applying the method of par-
tial acceleration.

– The proposed method of processing the experi-
mental data on the coulter centre of gravity al-
lows recovering the projection of the coulter 
trajectory to horizontal plane (the function of 
parametric presentation of the trajectory).

– The described procedure is usable for solving 
other problems related to the dynamics of farm 
machines.

– The reconstruction of the trajectory of motion 
of farm machine elements may be used to jus-
tify the smoothing level of measurement results 
by the Fourier method of partial acceleration in 
cases when the recovered trajectory itself is not 
the result of study.
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