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Abstract
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The effect of infrared radiation and microwave radiation on the moisture and thermal diffusivity characteristics of lentil 
seeds during infrared and microwave drying was investigated. Using mathematical equations, values and curves, moisture 
and thermal diffusivity were obtained. This study was to determine the moisture and thermal diffusivity of seed lentil 
with and without shrinkage at input temperatures 40°C and 60°C, infrared powers 1,000 W and 2,000 W and microwave 
power 270 W and 450 W, when the moisture content was reduced from 60 to 9% (d.b.). Drying rate was increased with 
increased air temperature, infrared radiation and microwave powers. Also drying rate decreased continuously with 
decreasing moisture content. The calculated values of moisture diffusivity by considering shrinkage were smaller than 
the values of moisture diffusivity without considering shrinkage. Moisture diffusivity with and without shrinkage de-
creased with decrease in moisture content of lentil seeds and thermal diffusivity with and without shrinkage decreased 
with increased moisture content. Both moisture and thermal diffusivity values decreased with increase in temperature.
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Grain legumes involve an important part of hu-
man diet in the world. Lentils (Lens culinaris) are 
a valuable nutrient due to plant protein. Lentil has 
the ability to overcome malnutrition problems of 
the poor due to being rich in protein (23–24%) 
(Rajput, Sarwar 1988). Fundamental data on 
moisture transfer of lentil seeds is needed for bet-
ter control the product quality. During the drying 
process, water exerts from the cell and causes a 
decrease in cell wall tension. This decrease in ten-
sion causes shrinkage of the materials and leads 
to changes in shape and decrease in dimensions 
(Mayor, Sereno 2004; Hashemi et al. 2009). 

The shrinkage phenomenon affects moisture and 
thermal diffusivity of the material, which is one of 

the main parameters in the drying process; it also 
has an influence on the drying rate (Senadeera et 
al. 2003). The theoretical determination of moisture 
diffusivities is difficult, because of the different phys-
ical and chemical structure and water content of ma-
terial (Khir et al. 2011). Any design to indicate dry-
ing behaviour must inevitably pay attention to the 
physical parameters of the material such as thermal 
diffusivity and moisture diffusivity (Abbasi Sou-
raki, Mowla 2008). Liquid and vapour diffusion is 
intended to be the initial mass transfer mechanism 
in drying grapes (Pahlavanzadeh et al. 2001). 

Thermal diffusivity is an important transport ex-
clusivity which is required in modelling and com-
putations of transient heat transfer in basic food 
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processing operations. Both the moisture and 
thermal diffusivity depend largely on the tempera-
ture and the moisture content (Yang et al. 2002; 
Çağlar et al. 2009). A number of researchers have 
reported that there is an exponential relationship 
between diffusivity (moisture and thermal) and 
drying temperature (Roberts et al. 2008). But 
limited information has been published on the re-
lationship between diffusivities and the moisture 
contents in foods (Çağlar et al. 2009). Hassini et 
al. (2007) stated that information processing based 
on analytical solution of a Fickian diffusion equa-
tion accounts for sample thickness reduction dur-
ing drying. Janjai et al. (2007) stated diffusivities 
of different components of longan fruit and it was 
indicated that moisture diffusivities of the shell and 
seed coat are much lower than those of the flesh, 
seed stalk and seed. Axial and radial moisture dif-
fusivity determined in cylindrical fresh green beans 
with and without shrinkage (Abbasi Souraki, 
Mowla 2008). Çağlar et al. (2009) determined 
the values of thermal diffusivity and moisture dif-
fusivity and drying rate under different drying 
temperatures and moisture contents using data 
obtained from infrared drying for seedless grape. 
Mariani et al. (2008) estimated thermal diffusivity 
of foods at different drying temperatures. Engineers 
and researchers created several theoretical and ex-
perimental studies to obtain moisture diffusivity 
without shrinkage in lentils (Tang, Sokhansanj 
1993; Tang et al. 1994). Scanlon et al. (2005) 
stated that the moisture diffusivity without shrink-
age in infrared heat treatment lentils depend on the 
moisture content. Also Işik et al. (2011) studied on 
determination of drying kinetics of green laird len-
til and selecting suitable model in microwave dry-
ing method. The kinetics of water absorption by 
lentils grown in Turkey was studied by a gravimet-
ric method during soaking at 15, 25 and 40°C to 
determine moisture diffusivity without shrinkage 
of this selected lentil (Gürtas et al. 2001). 

The aim of this study was determination of mois-
ture and thermal diffusivities of lentil seed under 
various drying conditions with considering shrink-
age phenomenon.

MATERIAL AND METHODS

Sample preparation. Fresh lentil (Lens culinaris) 
of Bile-Savar cultivar was provided from the Bu-Ali 

Sina University research farm, Hamedan, Iran. The 
samples were kept in a refrigerator at 4 ± 1°C until 
used. Their moisture content was determined using 
an air oven method. The initial moisture content 
was determined by drying the lentil sample in an 
air ventilated oven at 103°C for 72 h (ASAE 2007).
The average moisture content was 60% (d.b.).

Experimental step. The samples were carried 
out in a laboratory infrared radiation fluidized bed 
dryer and microwave oven (Sharp R-196T; Sharp 
Electronic, Bangkok, Thailand). The drying tests 
were conducted at condition of 30°C and 30% rela-
tive humidity (RH). 

Laboratory infrared radiation fluidized bed dryer 
is shown schematically in Fig. 1. The dryer consists 
of four infrared lamps (Philips 500 W; Philips Bel-
gium NV, Flemish, Belgium) with 2,000 W power 
at the top of the chamber with 30 cm height. A 
backward centrifugal fan with an inverter (Vincker 
VSD2; ABB Co., Taipei, Taiwan) was used to con-
trol the fan speed and air velocity was adjusted at 
the value of 1.76 m/s. About 8 g of lentil seeds was 
putted in dryer chamber incombustible as a single 
layer and drying examination was started. Input air 
temperatures of 40 and 60°C and microwave power 
of 270 and 450 W were adjusted in the examinations. 

A digital balance (AND GF-6000; AND Electron-
ics, Tokyo, Japan) with 0.01 g accuracy was used to 
measure the sample weight and an infrared ther-
mometer (Terminator, TIR 8863; Shenzhen Ever-

Fig. 1. Schematic diagram of laboratory infrared fluidized 
bed dryer
1 – inverter; 2 – fan and electrical motor; 3 –electric heater; 
4 – mixing chamber; 5 – input air temperature recorder; 
6 – drying chamber; 7 – infrared lamp; 8 – output air tem-
perature recorder; 9 – air outlet; 10 – air velocity sensor; 
11 – thermostat
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best Machinery Industry Co., Shenzhen, China) 
was used to measure average temperature of lentil 
seeds. In order to determine the variations in vol-
ume of the lentil grains, the dimensions of the lentil 
grain in two directions were measured by means of 
a digital calliper (thickness, diameter) at the time 
intervals. Lentil drying process was continued until 
final moisture content received to 9% (d.b.). Dur-
ing drying process, equilibrium moisture content 
of different moisture contents of lentil seeds was 
calculated.

Theoretical principle. The method includes an 
analysis of the drying process by differential model. 
The differential equation based on Fick’s second 
equation is (Kiranoudis et al. 1992):
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where:
DefX – moisture diffusivity without shrinkage (m2/h)
∂X – moisture content variation (d.b.)
∂t – time variation (h)
X  – moisture content (d.b.)

The boundary and initial conditions are as fol-
lows:

t = 0, X = X0
t = 0, z = 0, ∂X/∂z = 0
t = 0, z = L, X = Xe

where:
t – drying time (h)
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X0  – initial moisture content (d.b.)
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∂X – moisture content variation (d.b.)
Xe  – equilibrium moisture content (d.b.)
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For the path diffusion in the slab plate one may 
obtain (Crank 1975):
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Y0	 – ratio of initial moisture content of grain to initial 
volume content of grain (kgwater/kgdry solid mm3) 

Ye	 – ratio of equilibrium moisture content of grain to 
the grain volume in its equilibrium moisture con-
tent (kgwater/kgdry solid mm3)

The calculation of the lentil volume was based on 
the following equation (Scanlon et al. 2005):

V = 2Vs	 (9)
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where: 

2Vs  – equal to the original volume V of an average lentil grain (mmd) 

R  – function of thickness and diameter where values 𝑏𝑏 and 𝑎𝑎 are half thickness (mm) of a 

lentil grain and diameter (mm) of a lentil grain, respectively equilibrium moisture content is the 

moisture content that lentils will eventually reach under a given air condition. Equilibrium 

moisture content values (𝑋𝑋,) were obtained from the moisture isotherms reported by 

SAMANIEGO-ESGUERRA et al. (1991): 
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𝐶𝐶′ = 𝐶𝐶	
  exp t=
p.w

                                     (14) 

where: 
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where:
Ts – ambient temperature (°C)
k – thermal conductivity (W/mK)

H  – effective heat transfer coefficient (W/m2K)
Ti – initial temperature (˚C) 
α – thermal diffusivity (m2/h) 

The differential equation based on Eq. (15) for the 
path diffusion in the slab plate one may obtain is 
(Crank 1975):
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RESULTS AND DISCUSSION

Drying characteristics

Moisture content and drying rate were varied 
with infrared radiation powers, microwave powers 
and temperature levels. Variations in the moisture 
content and drying rate at different conditions of 
infrared radiation-microwave drying are shown 
in Figs 2 and 3. Infrared and microwave radiation 
energy is transferred from the heating element to 
the product surface without heating the surround-
ing air. The radiation impinges on the material and 
penetrates it and then is converted to sensible heat. 
With increased infrared and microwave powers, 
the more heat is generated which increases len-
til temperature. The results showed that moisture 
content of lentil grain decreased continuously with 
drying time (Chayjan et al. 2013) and drying rate 
decreased continuously with decreasing moisture 
content (Çağlar et al. 2009). During the drying 
process, moisture content reduced from 60 to 9% 
because moisture is in liquid phase form in capil-
lary vessels of lentils seeds. All capillary vessels in 
lentils seeds have different width. The vapour oc-
curs of these capillary vessels that is transported 
moisture inner lentil to lentils seed surface during 
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Fig. 2. Moisture content variation of lentil seeds at input airdifferent temperatures and different microwave and infrared 
radiation powers 
Mic –microwave power; IR –infrared radiation power
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drying. Vapour transport velocity in a narrow cap-
illary vessel is higher than a wide capillary vessel 
(Pickles 2003; Çağlar et al. 2009). Another cause 
is hygroscopic shrinkage; reducing moisture con-
tent resulted in a decrease in the permeability of 
the seedcoat of lentil. Similar results were reported 
in moisture-absorption characteristics of laird len-
tils and hardshell seeds (Tang et al. 1994), moisture 
diffusivity in laird lentil seed components (Tang, 
Sokhansanj 1993), drying kinetic and physical 
properties of green laird lentil in microwave dry-
ing (Işik et al. 2011) and the physical properties of 
micronised lentils as a function of tempering mois-
ture (Scanlon et al. 2005). 

At infrared power IR = 2,000 W, micro-
wave power Mic = 450 W and air temperature  
T = 60˚C had most influence because high infrared 
and microwave power cause high evaporation from 
seedcoat of lentil. The infrared power and micro-
wave power had significant effects on the drying 
time of the lentil seeds, particularly in high tem-
perature conditions. Drying rate decreased with 
decrease in moisture content of lentil seeds and 
drying rate is increased with increase in air tem-

perature, infrared power and microwave power. 
The increase in evaporation rate with temperature 
was stated in (Çağlar et al. 2009). With decreas-
ing moisture content of lentil seed, evaporation 
rate from the surface of lentil grain is more difficult 
and then drying rate is carried out very slow at the 
end of drying process. Diameter and thickness of 
the grain decrease as moisture content decreases. 
Similar results were reported in drying kinetic and 
physical properties of green laird lentil in micro-
wave drying (Işik et al. 2011).

Shrinkage

The results shown in Fig. 4 indicate that with 
increasing temperature shrinkage value increases 
(Hatamipour, Mowla 2003; Hashemi et al. 
2009). Shrinkage value at 60°C is higher than at 
40°C. The radiation penetrates the exposed materi-
al and the energy of radiation is converted into heat 
(Hebbar, Rostagi 2001), then with increasing 
power of infrared radiation and microwave, lentil 
grain temperature increased due to the absorption 
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of radiation. The results showed that in condition 
of Mic = 450 W, IR = 2,000 W and T= 60°C max. 
Shrinkage was achieved. Shrinkage process pro-
duces a variation in the distance required for the 
movement of water molecules. Raising the temper-
ature increases the movement of water molecules 
in the lentil grain and makes the distance between 
the molecules increase. Increasing temperature 
also causes expanding of structure and provides 
large area to volume ratio for good heat and mass 
transfer facilitating the water transport (Aroldo, 
Murr 2006).

Moisture diffusivities

Before calculating the moisture diffusivity, equilib-
rium moisture content of lentil grain should be calcu-
lated. Several drying experiments were followed un-
der different operating conditions (air temperatures, 
infrared radiation and microwave power) and the 

changes in volume of drying sample were determined 
from equations Eqs (9–11) at drying process time. 
Equilibrium moisture content was obtained from  
Eqs (12–14) where Menkov (2000) reported val-
ues of A', B' and C' (dimensionless parameters in  
Eqs (12–14) are 9.12, 0.32 and 0.0007, respectively 
and the values of h1 and h2 are 1,937.14 and 24,419.87, 
respectively. Table 1 shows equilibrium moisture con-
tent at ambient air temperature and relative humidity 
of 30°C and 30%, respectively and Ye at different input 
air temperatures and different powers of microwave 
and infrared radiation.

Variations of moisture diffusivity with and with-
out shrinkage versus moisture content are shown 
in Fig. 5; in consequence, moisture diffusivity of 
the lentil seeds decreased versus moisture con-
tent. The calculated values of moisture diffusivity 
with shrinkage are smaller than without shrink-
age. This shows that the effect of moisture diffusiv-
ity calculated without shrinkage overestimates the 
transport of mass by diffusion. This fact was also 

Fig. 3. Drying rate of lentil seeds at input airdifferent temperatures and different microwave and infrared radiation powers 
Mic –microwave power, IR –infrared radiation power
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observed by Abbasi Souraki and Mowla (2008) 
for axial and radial moisture diffusivity in cylindri-
cal fresh green beans in a fluidized bed dryer. Also 
Arevalo-Pinedo and Murr (2006) reported sim-
ilar results for vacuum drying of pumpkin. Mois-
ture diffusivity at 60°C was higher than at 40°C; 
also high infrared and microwave power caused 
drying in less time and higher evaporation from 
lentil grains (Fig.  5). At first, moisture diffusivity 
increased because vapour phase diffusivity of lentil 
increased. When total diffusivity values are deter-
mined with liquid phase diffusivity in case of high 
moisture content values, it is determined with va-

pour phase diffusivity in low moisture. Total diffu-
sivity decreases with decreasing moisture content, 
because the decrease in vapour phase diffusivity is 
greater than the increase in liquid phase diffusiv-
ity (Çağlar et al. 2009). Moisture diffusivity de-
creased when the moisture content was reduced 
from 60 to 9% (d.b.); other causes are shrinkage of 
the seedcoat of lentil and resistance of a compos-
ite material consisting of the seedcoat and coty-
ledons of lentil. Seedcoat of lentil mainly ruled in 
reduction rate of moisture diffusivity. Variation in 
seedcoat of lentil properties may significantly affect 
moisture evaporation rates of lentil. Similar results 

Table 1. Ratio of equilibrium moisture content of grain to the grain volume in its equilibrium moisture content (Ye) 
at different input temperatures and different powers of microwave (Mic) and infrared radiation (IR) at relative humid-
ity 30%, ambient temperature 30°C and with equilibrium moisture content 8.6% d.b.

Input temperature (°C) 40 60
Mic (W) 270 450 270 450 
IR (W) 1,000 2,000 1,000 2,000 1,000 2,000 1,000 2,000 
Ye (kgwater/kgdry solid m3) 0.15 0.18 0.17 0.15 0.15 0.17 0.16 0.13

Fig. 4. Volume contraction variation of lentil seeds at input airtemperatures, microwave and infrared radiation powers 
Mic –microwave power, IR –infrared radiation power
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Table 2. Values of moisture diffusivity without shrinkage (DefX) and with shrinkage (DefY) in other researches under 
different powers of microwave (Mic) and infrared radiation (IR)

Material Temperature (ºC)
Range of DefX 
(×10–6 m2/h) 

Range of DefY 
(×10–6 m2/h)

Reference

Lentil 30–50 10 – (Tang, Sokhansanj 1993)
Lentil 40 10.8 – (Scanlon at al. 2005)
Fresh lentil 45–60 10.9–64 – (Karatas 1997)

Lentil

40°C, IR = 1,000 W, Mic = 270 W 8.4 4.80

present work

40°C, IR = 2,000 W, Mic = 270 W 11.3 9
40°C, IR = 1,000 W, Mic = 450 W 10.6 8.4
40°C, IR = 2,000 W, Mic = 450 W 26.8 24.3
60°C, IR = 1,000 W, Mic = 270 W 11.2 8.7
60°C, IR = 2,000 W, Mic = 270 W 18.2 14.7
60°C, IR = 1,000 W, Mic = 450 W 28.5 25.4
60°C, IR = 2,000 W, Mic = 450 W 36.8 31
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Fig. 5. Moisture diffusivity of lentil seeds at input air different temperatures and different powers of microwave and 
infrared radiation including
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were reported in moisture diffusivity in laird lentil 
seed components (Tang, Sokhansanj 1993) and 
moisture-absorption characteristics of laird lentils 
and hardshell seeds (Tang et al. 1994). 

At the start of drying process, influence of mi-
crowave power was higher than infrared radiation, 
because at the start of the process, lentil grains 
were exposed to temperature about 95°C. In Fig. 5a 
at 40°C, when moisture diffusivity without shrink-
age increased from 2.12 × 10–7 to 2.63 × 10–7 then 
moisture diffusivity decreased to 0.84 × 10–7 and 
when moisture diffusivity with shrinkage increased 
from 0.79 × 10–7 to 1.35 × 10–7 then moisture dif-
fusivity decreased to 0.48 × 10–7. Similar trends 
were found for other conditions, with and without 
shrinkage (Fig 5b–d). 

Table 2 shows values of moisture diffusivity with-
out shrinkage (DefX) and moisture diffusivity with 
shrinkage (DefY) estimated by other investigators 
and present work. The estimated values of moisture 
diffusivity without shrinkage at 40°C in three cases 
(IR = 1,000 W and Mic = 270 W, IR = 2,000 W and  
Mic = 270 W, IR = 1,000 W and Mic = 450 W) are close 
to each other. The moisture diffusivities without 
shrinkage estimated in this work are in agreement 
with those proposed by Tang and Sokhansanj 
(1993), Karatas (1997) and Scanlon et al. (2005). 
At 40°C, IR = 2,000 W and Mic = 450 W had higher 
values of moisture diffusivities without shrinkage, 
because the absorption microwave and infrared 
radiation cause increase in temperature at lentil 
as a result of moisture diffusivity without shrink-

Fig. 6. Thermal diffusivity of lentil seeds at input air different temperatures and different powers of microwave and in-
frared radiation including
Mic –microwave power, IR – infrared radiation power 
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age, compared to other cases (IR = 1,000 W and  
Mic = 270 W, IR = 2,000 W and Mic = 270 W, IR = 
1,000 W and Mic = 450 W). The DefY value can be 
calculated based on DefX as follows:

DefY = 1.069DefX + 0.209R2 = 0.9915 	 (20)

Thermal diffusivity

Thermal diffusivity versus moisture content in-
creased with increasing temperature during dry-
ing process and thermal diffusivity decreased with 
increasing moisture content (Fig. 6). This fact was 
also observed by Çağlar et al. (2009) for thermal 
diffusivity of seedless grape under infrared drying. 

With increasing power of infrared radiation and 
microwave power, lentil grain temperature in-
creased due to the absorption of radiation. By at-
tention to higher conversion value from water to 
vapour at higher temperature, vapour phase diffu-
sivity is increased in the first period drying. When 
thermal diffusivity values are determined with liq-
uid phase diffusivity in high moisture content val-
ues, it is determined with vapour phase diffusivity 
in low moisture content. Increasing temperature 
causes high evaporation from seedcoat of lentil and 

thus reduces vapour phase diffusivity. The thermal 
diffusivity decreases with decreasing moisture con-
tent, because the decrease in vapour phase diffu-
sivity is greater than the increase in liquid phase 
diffusivity (Jood et al. 1998; Çağlar et al. 2009). 
Because of different moisture in components of 
lentil, the curve of thermal diffusivity of lentil seed 
is behaviour of natural logarithm at drying time. 
Also thermal diffusion model considering thickness 
changes of lentil seeds are effect overestimates.

In Fig. 6a at 40°C, thermal diffusivity without 
shrinkage decreased from 8.92 × 10–6 m2/h to  
0.2 × 10–6 m2, h and thermal diffusivity with shrinkage 
decreased from 8.85 × 10–6 m2/h to 0.12 × 10–6 m2/h.  
Similar trends were observed for other conditions, 
with and without shrinkage (Fig. 6b– d). 

Table 3 shows thermal diffusivity with and with-
out shrinkage values estimated by other investi-
gators and present work. The estimated values of 
thermal diffusivity without shrinkage in the litera-
ture are different, because the lentil seeds used in 
this study were tested after harvesting but in Kara 
et al. (2012) and Gharibzahedi et al. (2013) they 
were tested after several months of storage. Stor-
age of lentil causes biological processes. Effects 
of storage on the seed breakage, germination and 
cooking quality of lentils were further studied by 

Table 3. Values of thermal diffusivity (α) of several products in number of other researches under different powers of 
microwave (Mic) and infrared radiation (IR)

Material Temperature (°C) Range of α without 
shrinkage (×10–6 m2/h)

Range of α with 
shrinkage (×10–6 m2/h) Reference

Borage 
seed 6–20 8.35–11.44 – (Yang et al. 2002)

Barley
cv. Kavir 25 5.65–1.18 – (Nouri Jangi et al. 

2011)cv. Nosrat 25 5.28–2.13 –
Red lentil 3.40–3.01 – (Kara et al. 2012)

Red lentil 7.74–5.94 – (Gharibzahedi et 
al. 2013)

Lentil

40°C, IR = 1,000 W, Mic = 270 W 0.2 0.12

present work

40°C, IR = 2,000 W, Mic = 270 W 0.29 0.19
40°C, IR = 1,000 W, Mic = 450 W 0.34 0.19
40°C, IR = 2,000 W, Mic = 450 W 0.55 0.47
60°C, IR = 1,000 W, Mic = 270 W 0.42 0.3
60°C, IR = 2,000 W, Mic = 270 W 0.4 0.3
60°C, IR = 1,000 W, Mic = 450 W 0.56 0.5
60°C, IR = 2,000 W, Mic = 450 W 0.84 0.63
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investigators. Storage of lentils increased breakage 
sensitivity and reduced cooking quality (Yadav et 
al. 2007). Also temperature and initial moisture 
content effect on thermal diffusivity were observed 
(Yang et al. 2002; Çağlar et al. 2009). Tempera-
ture and initial moisture content of lentil seed in 
this study were more than temperature and initial 
moisture content of red lentil seed in other stud-
ies. The cultivar of lentil seeds used in this study 
was different from red lentils used by Kara et al. 
(2012) and Gharibzahedi et al. (2013).The effec-
tive thermal diffusivity without shrinkage (αefY) can 
be calculated based on effective thermal diffusivity 
with shrinkage (αefX) as follows:

αefY = 0.837αefX – 0.055R2 = 0.9478	 (21)

CONCLUSION

Drying rate and volume contraction decreased 
with decreasing moisture content of lentil seeds. 
Drying rate and volume contraction at 60°C were 
more than at 40°C. Increasing infrared radiation 
and microwave power caused increase in drying 
rate and volume contraction. Moisture diffusiv-
ity, with and without shrinkage decreased with 
decrease in moisture content of lentil seeds, and 
thermal diffusivity with and without shrinkage 
decreased with increasing moisture content. Both 
moisture and thermal diffusivity with and without 
shrinkage values increased with increase in tem-
perature. 
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