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Abstract: Optimum irrigation scheduling and new technologies are the key to the successful practice of modern agri-
culture and natural resources, such as water management. Α three-year research project was conducted at Velestino, 
Magnesia, Greece. The aim was to study whether vegetation indices can be used to estimate the crop coefficients of corn 
in order to apply an intelligent method of irrigation using drones in the future. The normalised difference vegetation in-
dex (NDVI), the soil-adjusted vegetation index (SAVI), the renormalised difference vegetation index (RDVI) and a new 
index [difference infrared – green vegetation index (DIGVI)] were calculated using multispectral photos from a camera 
adapted to a drone. Three different methods were applied to calculate the crop coefficients: (i) the water balance and the 
FAO Penman-Monteith reference evapotranspiration, (ii) the climatic data, (iii) the vegetation indices. The irrigation 
dose covered 100% of the crop water needs according to the soil moisture measurements and the single crop coeffici-
ent values. The statistical analysis and the simple linear regression method showed that the corn crop coefficients can 
be estimated when these indices are used as independent variables.
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Daily agricultural practices help to keep the time-
less problem of rational irrigation scheduling in  the 
limelight. It  is well known that the need to produce 
agricultural products intended for human consump-
tion is constantly increasing as a result of the increase 
in the earth's burgeoning population (Gu et al. 2020). 
On the other hand, it is also known that water is the 
most indispensable natural resource for the agricul-
tural sector and it must be maintained in both quanti-
ty and quality, at least, in its current state, so as to re-
main in sufficient supply for future generations.

Further developments in  technologies have led 
to a new era in irrigation scheduling. Satellite images 
have been used to  calculate vegetation indices and 

through them to also estimate different characteris-
tics of cultivated plants. The success of these methods 
is based on the quality of the photos which are often 
negatively affected by  the altitude of  the captured 
image (Radhadevi et al. 2016). In addition, irrigation 
scheduling requires field data to be taken on a weekly 
basis. In the case of satellite photos, the time it takes 
for the satellite to  pass repeatedly over a  field and 
to capture an image of the same field may exceed a pe-
riod of one week and if someone takes the time that 
is needed to buy, process and use the satellite photos 
in irrigation scheduling into consideration, this time 
is even longer. Nowadays, in agricultural production, 
new techniques in  the calculation of  vegetation in-
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dices based on multispectral photos taken by drones 
are being applied (Sylvester 2018). Vegetation indi-
ces are used to assess the health of cultivated plants 
in  open field conditions (Papanikolaou and Sakel-
lariou-Makrantonaki 2020a). However, they are also 
used in  the estimation of  various crop characteris-
tics, such as the leaf area index (Potgieter et al. 2017), 
the estimation of the soil cover by the foliage of culti-
vated plants (Toureiro et al. 2017; Papanikolaou and 
Sakellariou-Makrantonaki  2020b), and the estima-
tion of biomass production (Latifi et al. 2015; Papan-
ikolaou and Sakellariou-Makrantonaki 2020a).

Different vegetation indices have been devised 
by numerous researchers. The best known one is the 
normalised difference vegetation index (NDVI), 
which has been used in the estimation of the plant 
leaf area index (Toureiro et al. 2017) and crop evapo-
transpiration (Droogers et  al.  2010). NDVI  is  used 
in  empirical equations to  estimate the single and 
double crop coefficient (Zhang et  al.  2019). Zhang 
and Zhou (2019) maintain that the water status 
of plants can be estimated both by vegetation indices 
sensitive to  plant moisture variation and by  indi-
ces used to estimate plant growth. Such indices are 
the soil-adjusted vegetation index (SAVI) and the re-
normalised difference vegetation index (RDVI).

Irrigation scheduling by  means of  the reference 
evapotranspiration method continues to  be  a  reli-
able method for calculating crop water needs. Spe-
cifically, the calculation of the crop evapotranspira-
tion (ETc) through the multiplication between the 
crop coefficient (Kc) and the reference evapotrans-
piration (ETo) is  widely used (Allan et  al.  1998). 
In  Greece, Papazafeiriou (1999) studied the crop 
evapotranspiration and estimated crop coefficients 
for many different crops, including corn. In  those 
studies, the ETo was calculated through the Modi-
fied Penman method as described in FAO 24 man-
ual, and the FAO  Penman-Monteith as  described 
in  FAO  56  manual. New technologies in  the agri-
cultural sector are leading to  the ongoing race for 
even greater modernisation in irrigation scheduling. 
Therefore, the challenge is to combine the applica-
tion of new and existing techniques in order to im-
prove the water use efficiency and, if possible, to mi-
nimise wasting irrigation water.

In the present research corn was chosen because 
it is one of the most important cultivated plants for 
the agricultural economy of  Greece as  it  has great 
nutritional value (Papanikolaou and Sakellariou-
Makrantonaki 2020b). Secondly, the Greek farmers 

are already experienced in  corn cultivation tech-
niques and they have already made large investments 
in agricultural equipment used in corn cultivation. 
Thirdly, it is a plant that can be affected by different 
irrigation doses (Toureiro et al. 2017). Finally, corn 
is a plant with a high biomass production and it can 
be used as an energy plant for the production of sol-
id fuels (pellets) or liquid ones (bioethanol) (Ambro-
sio et al. 2017).

Taking all the above into account, a three-year re-
search project was conducted. The aim was to study 
whether vegetation indices can be used to estimate 
the crop coefficients of corn in order to apply an in-
telligent method of irrigation using drones in the fu-
ture. This research is the first step in using a multi-
spectral camera adapted to a cheap drone to achieve 
this aim. It is an innovative research project because, 
for the first time, vegetation indices are applied 
in the estimation of the crop coefficients of corn for 
the climatic conditions of Central Greece. A major 
advantage of  this technique over satellite photos 
is that it is less affected by clouds, has a lower cost 
and photos can be  taken at  regular intervals over 
a period of less than a week and according to the ir-
rigation schedule that is  set by  the farmer. In  par-
ticular, the objectives of  this research were: (i)  the 
estimation of the crop coefficients per stage of crop 
development using vegetation indices and multi-
spectral photos from a drone and (ii) the evaluation 
of  the results using the vegetation indices with the 
corresponding results from the application of  two 
alternative crop coefficient calculation methods.

MATERIAL AND METHODS

A  three-year study (2018–2020) was conducted 
at  the Laboratory of  Agricultural Hydraulics, De-
partment of Agriculture, Crop Production and Ru-
ral Environment, University of Thessaly. Specifically, 
the open field experiment was conducted at  the 
Experimental Farm of  the University of  Thessaly, 
in  Velestino, Magnesia, Greece (latitude:  39°02'N, 
longitude: 22°45'E) (Figure 1). The altitude is about 
70  m  a.s.l. The  soil texture is  38% clay, 32% silt, 
and 30% sand and classified as  clay to  clay loam 
(USDA  classification). Undisturbed soil samples 
were taken and the field capacity and the perma-
nent wilting point were measured at  the labora-
tory using a pressure plate device. The soil samples 
were taken from two different depths, 0–30  and 
30–60  cm. The  average field capacity at  the depth 
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of 0–60 cm was 0.387 cm3∙cm–3 and the permanent 
wilting point was 0.218 cm3∙cm–3. Both the field ca-
pacity and the permanent wilting point were used 
to calculate the total available soil water (TAW) and 
the readily available soil water (RAW) (FAO 1998). 
Afterward, the RAW  value was used to  calculate 
the Practical applied irrigation dose for a 0.50 m ef-
fective root depth. As a depletion fraction, a value 
of  0.50  was used according to  Allan et  al.  (1998). 
The  practical applied irrigation dose was found 
to be equal to 51 mm which was used to calculate 

the maximum irrigation interval for the most cru-
cial month of  the irrigation period (Papanikolaou 
and Sakellariou-Makrantonaki  2020b). Following 
this procedure, the maximum irrigation interval was 
calculated as  the  quotient of  the division between 
the practical applied irrigation dose and the aver-
age ETo of the crucial month for the Central Greek 
conditions (July, ETo ≈ 6.3 mm∙day–1), based on re-
corded data, and was found to be 8 days.

The research included different treatments, each 
in three replications, while the experimental design 
was used randomised complete blocks (Montgom-
ery and Runger  2003; Sakellariou-Makrantona-
ki  and Papanikolaou  2008a, 2008b; Makrantonaki 
et  al.  2009; Papanikolaou and Sakellariou-Makran-
tonaki 2012; Papanikolaou et al. 2018; Papanikolaou 
and Sakellariou-Makrantonaki  2019). The  full re-
search contained three treatments where a different 
amount of irrigation water was applied. In the first 
treatment (full irrigation), the crop water needs cov-
ered 100% (E100), while, in  the E75 treatment, the 
irrigation dose was 25% less than the full one and, 
in the E50 the irrigation treatment, the dose was 50% 
less than the full irrigation.

The meteorological data and the ETo  were re-
corded every day by an agrometeorological station 
which is  located 50  m away from the plots (aver-
age distance). The  area is  characterised by  a  typi-
cal Mediterranean climate. Figures 2A, B show the 
mean daily air temperature and the total rainfall 
(10-day average values) in the study area, during the 
2018  and 2019  cultivating period, in  comparison 

Figure 1. The study area

Figure 2. Average daily temperature and total precipitation of the years (A) 2018 and (B) 2019 in comparison with the 
average values of the last 20 years
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with the corresponding average values of  the last 
25 years. In general, during the years (2018–2020), 
the mean air temperature followed the pattern 
of the average year. An exception was observed dur-
ing the period from May to  August  2018. During 
the 2019 period, the air temperature followed a pat-
tern even closer to the temperature of the average 
year. The third year of the research (2020) was close 
to the second year (2019).

During the cultivating period of 2018, the rainfall 
was high. The total actual rainfall from the sowing 
date to  the end of  August was 242.0  mm and half 
of this rainfall (118.0 mm) fell from June 10 to July 10. 
During those thirty days, the corn water needs 
were covered by  the rainfall exclusively and there 
was no need for further irrigation even though the 
growth rate of the crop was high. On the other hand, 
in 2019, the total actual rainfall between the sowing 
date and the end of August was just 41.0 mm. Only 
23 mm of rain fell during the irrigation period and 
the crop water needs were mainly covered by the ir-
rigation treatments. The  third year of  the research 
(2020) was close to the second year (2019).

The maize was sown on Apr 17, 2018; Apr 22, 2019 
and Apr 15, 2020 with a four-row seeder. The distance 
between the plants was 13 cm while the distance be-
tween the rows was 80 cm. The total surface of each 
plot was 40  m2. The  maize was harvested from 
Sept 10  to Sept 20  (728 growing degree days) each 
year. The  nitrogen fertilisation covered the crop 
needs fully as described in  the National Optimized 
Fertilization Code, i.e. 180 units of nitrogen per hect-
are. Two chemical applications, one before planting 
and the other after the emergence of the corn plants, 
were applied and weeding by hand weeding occurred 
when the maize was 40 cm high, just before the in-
stallation of  the drip irrigation laterals, to  control 
the weeds each year (Papanikolaou and Sakellariou-
Makrantonaki 2019, 2020b).

The surface drip irrigation system was used 
to apply the irrigation dose. The distance between 
the emitters was 0.5 m and the distance between the 
irrigation lines was 1.60  m. The  dripper flow rate 
was 4.0  L∙h–1.  The  irrigation programme started 
on May 16, 2018; May 31, 2019 and May 15, 2020. 
Before the drip irrigation programme, two sprin-
kler  irrigations were applied in  2018  and three 
sprinkler irrigations were applied in  2019  and 
2020  in  order to  achieve the optimal germination 
rate. The  irrigation intervals were set at  6  days, 
2  days earlier compared to  the maximum irriga-

tion interval that was mentioned above in  order 
that the irrigation dose did not to exceed the practi-
cal irrigation dose (Papanikolaou and Sakellariou-
Makrantonaki 2019).

The irrigation dose was calculated following the 
available soil moisture method. This particular 
method calculates the amount of the irrigation dose 
so that the soil moisture will rise from its current level 
to the field capacity each time as proposed by Papa-
nikolaou and Sakellariou-Makrantonaki (2012). Ac-
cording to this methodology, the irrigation dose had 
to  be  applied every time the soil moisture sensors 
recorded the soil moisture close to 30% v/v. The ir-
rigation dose was calculated based on Equation (1):

                                                                   
100

iFC SM
IR RD

−
= ×

	
(1)

where: IR – net irrigation dose (mm); FC – field capacity 
(% v/v); SMi – soil moisture measured by the soil mois-
ture sensor (% v/v) early in the morning of every sixth 
day after the former irrigation; RD – effective root zone 
(sample measures showed that the mean value was near 
to 500 mm in depth).

Before each irrigation, the soil moisture values 
were recorded and the irrigation dose was calculat-
ed through Equation (1). The applied irrigation dose 
completely covered the total irrigation needs.

In this study, the simple Kc was used, as the find-
ings are going to be used in the daily irrigation prac-
tice to  support farmers in  their optimal irrigation 
scheduling.

Three different methods of  calculating the plant 
growth rates of corn were applied. The growth stages 
of corn are listed in Table 1.

The first applied method to  calculate the crop 
coefficients at  the stage of  the maximum and final 
growth was the water balance method and FAO Pen-
man-Monteith reference evapotranspiration using 
the following Equation (2):

c eET P IR CR DP RO SMD= + + − − ±
	

(2)

where: ETc  –  daily crop evapotranspiration  (mm); 
Pe – effective precipitation (mm); IR – irrigation depth 
that infiltrates the soil (mm); CR – capillary rise from 
the deep water table (ignored); DP  –  deep percola-
tion (assumed to be 0); RO – surface run off (assumed 
to be 0); SMD – soil moisture difference between two 
consecutive days (mm).
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It must be noted that the capillary rise drops to zero 
when the deep water table is at least 1 m below the 
bottom of the root zone and there is no contribution 
through the capillary rise from the groundwater into 
the root zone (Allan et al. 1998). Furthermore, un-
der surface drip irrigation and the exact calculation 
of the crop water needs, the RO drops to zero and 
the DP also drops to zero as the soil moisture sensor 
showed (at a depth of 70 cm). The soil moisture con-
tent (volumetric) was measured in  real time every 
hour from the beginning of the drip irrigation to its 
completion, with three capacitance soil moisture 
sensors at depths of 30, 50 and 70 cm. Daily precipi-
tation values lower than 0.2 of the ETo were assumed 
to be zero as they evaporated directly from the soil 
(Allan et al. 1998). The crop coefficient per growth 
stage is calculated through Equation (3):

c c oET K ET= +
	

(3)

where: ΕΤc – the crop evapotranspiration (mm∙day–1); 
Kc –  the crop coefficient per growth stage; ETo –  the 
reference evapotranspiration  (mm∙day–1). ETo  was 
recorded from an agrometeorological station following 
the FAO Penman-Monteith Equation.

According to the second method, the crop coeffi-
cients in the maximum and final growth were calcu-
lated with the mathematical equations based on cli-
matic data as described by Allan et al. (1998):

( ) ( )
0.3

c mid c mid(Tab) 2 min0.04 2 0.004 45
3
hK K u RH   = + × − − × − ×      

( ) ( )
0.3

mid mid(Tab) 2 minKc  Kc 0.04 2 0.004 45
3
hu RH   = + × − − × − ×       	

(4)

( ) ( )
0.3

c end c end(Tab) 2 min      0.04 2 0.004 45
3
hK K u RH   = + × − − × − ×      

( ) ( )
0.3

end end(Tab) 2 min      Kc Kc 0.04 2 0.004 45
3
hu RH   = + × − − × − ×       	

(5)

where: Kc mid(Tab) – value for Kc mid taken from the bibliog-

raphy (Allan et al. 1998); Kc end(Tab) – value for Kc end taken 
from the bibliography (Allan et  al.  1998); u2  –  mean 
value for the daily wind speed at 2 m height over the 
grass during the mid-season growth stage (m∙s–1), for 
1 m∙s–1 ≤ u2 ≤ 6 m∙s–1; RHmin – mean value for the daily 
minimum relative humidity during the mid-season 
growth stage  (%), for 20%  ≤  RHmin  ≤  80%; h  –  mean 
plant height during the mid-season stage  (m) for 
0.1 m ≤ h ≤ 10 m.

The initial Kc was calculated through the graphi-
cal method (Allan et  al.  1998). This method takes 
the average amount of rainfall or irrigation applied 
at this stage and the average value of the reference 
evapotranspiration for the same period into ac-
count. In the year 2018, in a period of 30 days, from 
sowing until 10% of  the soil being covered by  the 
leaf area of the plants, two irrigations of 20 mm each 
were applied with the total amount of water, while 
the total rainfall for this period was 19 mm and the 
average ETo was 3.3 mm∙day–1. For the same period 
in 2019, three irrigations were applied with a  total 
rainfall of 20 mm each, while the total rainfall was 
only 9 mm and the average ETo was 2.8 mm∙day–1. 
In the year 2020, three irrigations were applied with 
the same amount of water as in the previous years, 
while the total rainfall was only 2 mm and the aver-
age ETo was 3.7 mm∙day–1.

According to  the third method, the crop coeffi-
cients in the maximum and final growth were esti-
mated with regression Equations where vegetation 
indices were used as independent variables.

In the present research the NDVI, SAVI, RDVI and 
a new index [difference infrared – green vegetation 
index (DIGVI)] were used.

NIR RED
NDVI

NIR RED

−
=

+
   (Tucker 1979)	 (6)

( ) ( )1 0.5

0.5

NIR RED
SAVI

NIR RED

+ × −
=

+ +
   (Huete 1988)	 (7)

( )0.5

NIR RED
RDVI

NIR RED

−
=

+
 (Roujean and Breon 1995)	 (8)

The new vegetation index calculated through the 
following Equation (9):

Table 1. Corn growing stages

Years
Growth stages duration

initial development mid-season end-season
2018 17/4–9/5 10/5–24/6 25/6–8/8 9/8–23/8
2019 22/4–10/5 11/5–22/6 23/6–3/8 4/8–21/8
2020 14/4–4/5 5/5–17/6 18/6–30/7 31/7–17/8
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NIR GRE
DIGVI

NIR GRE RED

−
=

+ +
	 (9)

where: DIGVI  –  difference infrared vegetation index 
(NIR)  –  green vegetation index (GRE) has values 
between  –1  to  +1  and positive values for the crop 
in normal development; RED – red vegetation index.

A  Survey  3W  compact single-sensor multispec-
tral camera (RGN) (Mapir, USA) was used. This 
camera uses the near-infrared channel centred 
at  850  nm  with an  interval  –20  to  +20  nm, the 
red channel is  centred at  660  nm  with an  inter-
val –10 to +10 nm and the green channel is centred 
at  550  nm  with an  interval  –10  to  +10  nm  (Ma-
pir 2022). This camera was used with a cheap Hubsan 
H501S X4 drone (Hubsan, China) (Hubsan 2022).

According to  the Index Database of  vegetation 
indices, Equation  (10) is  not mentioned. Only the 
Norm  F  equation is  listed (Index DataBase  2021) 
as follows:

( ) ( )
Norm 

F
F

NIR GRE RED
=

+ +
	 (10)

where: F – NIR or green or red band each time.

The statistical package of the Minitab (version 16 for 
Windows) was used in the analysis of the data. Specifi-
cally, a one-way ANOVA was used with a significance 
level P  <  0.05. The  simple linear regression method 
was used to estimate the crop coefficients (Montgom-
ery and Runger 2003). The dependent variable was the 

crop coefficient of the corn per the growth stage and 
the independent variables were the vegetation indices. 
The root mean square deviation (RMSD) and relative 
mean deviation (RMD) were used to evaluate the re-
sults as they are described in the following equations:

( )21RMSD

n
i ii

X Y

n
=

−
=
∑ 	 (11)

1

1RMD 100 
n i i

i

X Y

n X
=

−
= ∑ 	 (12)

where: Xi – values of the Kc that are found in the bib-
liography (Allan et al. 1998); X  – mean value of all the 
Xi values (i = 1……n); Yi – values of the Kc as was esti-
mated by the vegetation indices (VIs).

For the evaluation of  the estimation equations 
of the crop coefficients, the method of  'Leave-One-
Out' cross validation was used (Cunha et  al.  2010; 
Lindberg et al. 2013). This method is used to evaluate 
estimation equations when a subset of the data is used 
to generate these equations while the rest of the data 
are used as evaluation values. The evaluation is com-
pleted by applying Equations (11) and (12).

RESULTS AND DISCUSSION

The first method applied in the calculation of the 
crop coefficient in corn was the soil water balance. 
Figure  3 shows the variation in  the soil moisture 

Figure 3. Soil moisture changes in volumetric percent (lines) in four different soil depths and the irrigation (brown 
bar) and precipitation events (green bars) during (A) 2018 and (B) 2019
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at four different soil depths, 30, 50, 70 and 90 cm for 
two of the three years of the research (2018, 2019). 
The  graph shows that there is  no water loss due 
to  the deep percolation since  the soil moisture 
at  a  depth of  70  and 90  cm  remains almost con-
stant. The same figure shows the applied irrigation 
doses for the years 2018 and 2019 (2020 was close 
to the year 2019). The statistical analysis showed that 
the value of the initial Kc = 0.35 differed significantly 
from the value of 0.30 proposed by Allan et al. (1998) 
for cereals. Regarding the crop coefficient at  the 
maximum growth stage of  the crop, the average 
value of Kc mid = 1.174 was not statistically different 
compared to  the value of  Kc mid  =  1.150  proposed 
by the same researchers. Finally, the crop coefficient 
at  the end of  the growing season (Kc end  =  0.390) 
did not differ compared to the value 0.35 proposed 
by the above researchers.

The second method to calculate the crop coefficients 
was based on climatic data and the equations proposed 
by Allan et al.  (1998). The crop coefficient values for 
the years 2018, 2019 and 2020 per growth stage of the 
corn were calculated by Equations (4) and (5). The sta-
tistical analysis showed that the three-year mean value 
of the maximum crop coefficient (Kc mid = 1.157) was 
closer to  the value proposed by  Allan et  al.  (1998) 
(Kc mid  =  1.150) compared to  the corresponding val-
ue  (Kc mid  =  1.174) that was calculated through the 
soil water balance method. The  crop coefficient val-
ues at  the end of  the growing period of  the  corn 
(Kc end  =  0.362) did not differ significantly from the 

value (Kc end = 0.350) proposed by Allan et al.  (1998), 
but the difference was significant compared to the cor-
responding value of the crop coefficient as calculated 
through the soil water balance method (Kc end = 0.390).

The third method applied to calculate the crop co-
efficients of corn was based on the estimation regres-
sion equations where the vegetation indices were 
used as  independent variables. The  simple linear 
regression method was used, where the independ-
ent variables were four different vegetation indices 
and the crop coefficient was the dependent variable. 
The  estimation equations of  the crop coefficient 
for the whole vegetation period were calculated with 
the application of simple linear regression for each 
of  the vegetation indices NDVI, SAVI, RDVI  and 
DIGVI, which are given by Equations below:

2
c 0.188 1.320 , = 85.2 K NDVI R= + ×

	
(13)

2
c 0.045 1.280 , = 90.6K SAVI R= − + ×

	
(14)

2
c 0.019 0.496 , = 87.5K RDVI R= − + ×

	
(15)

2
c 0.281 1.070 , = 88.9K DIGVI R= + ×

	
(16)

Table  2 presents the average values of  the crop 
coefficient for the years 2018, 2019  and 2020  per 
growth stage of the corn as calculated by the Equa-
tions (13–16).

Table 2. Corn coefficients (Kc) values per growth stage during the three-year research study using vegetation indices

Growth stage
Kc values per year and VI Kc values 

from the tables*NDVI SAVI RDVI DIGVI
2018
Initial 0.313 0.329 0.385 0.359 0.300
Mid-season 1.120 1.108 1.081 1.119 1.150
End-season 0.651 0.617 0.609 0.989 0.350
2019
Initial 0.359 0.366 0.398 0.374 0.300
Mid-season 1.166 1.115 1.090 1.142 1.150
End-season 0.676 0.592 0.594 0.978 0.350
2020
Initial 0.384 0.399 0.398 0.378 0.300
Mid-season 1.151 1.137 1.103 1.159 1.150
End-season 0.668 0.592 0.627 1.008 0.350

*according to Allan et al. (1998); VI – vegetation index; NDVI – normalised difference vegetation index; SAVI – soil-adjusted 
vegetation index; RDVI – renormalised difference vegetation index; DIGVI – difference infrared – green vegetation index
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The statistical analysis of  the data showed that 
the  value of  the initial Kc differed significantly 
from the value of 0.30 proposed by Allan et al. (1998) 
for cereals. The  mean value of  the maximum crop 
coefficient (Kc mid = 1.087) had a statistically signifi-
cant difference compared to the value (Kc mid = 1.150) 
proposed by Allan et al. (1998) and compared with 
the corresponding value calculated with the applica-
tion of the other two methods. The crop coefficient 
at  the end of  the growing (Kc end  =  0.631) differed 
significantly from the value (Kc end = 0.350) proposed 
by  Allan et  al.  (1998) and in  comparison with the 
corresponding value calculated with the application 
of the other two methods.

Generally, there were differences between the meth-
ods in regards to the crop coefficients. At the initial 
stage, the crop coefficient was calculated following the 
graphical method proposed by Allan et al. (1998) and 
the vegetation index one. The Kc  at  the initial stage 
(beginning of the growing) of the crop (Kc ini) values 
obtained from the RDVI and DIGVI vegetation indi-
ces were higher than those of the Kc ini based on the 
other methods and the difference was statistically 
significant. The  lower Kc ini  value that was proposed 
by Allan et al. (1998) in the tables of the FAO 56 man-
ual was significantly different when compared with 
the Kc ini calculated using the graphical method.

At  the stage of  full crop growth, the statistical 
analysis showed that there were differences between 
the three methods of  the crop coefficient calcula-
tion. In  particular, the crop coefficients calculated 
from the soil water balance gave significantly high-
er values when compared with the other methods. 
By  contrast, the Kc mid  values estimated with the 
RDVI were the lowest with a statistically significant 
difference from the other methods. Table  3 shows 
the average values of the Kc for the three years of the 
research (2018–2020).

At the end of  the growth period of  the corn, the 
statistical analysis showed that the crop coefficient 

values were different between the three methods 
of  calculation. In  particular, the Kc end  values ac-
cording to  the soil water balance method, math-
ematical Equation (1) and those proposed by Allan 
et al. (1998) show in the tables of the FAO 56 manual 
are almost the same without any statistical differ-
ence between  them. According to  these methods, 
the Kc end  values were statistically lower than the 
Kc end values estimated from the vegetation indices. 
The Kc end values estimated from the NDVI, SAVI and 
RDVI did not differ from each other, too, but differed 
statistically significantly from the Kc end  value esti-
mated from the DIGVI, which gave the maximum 
Kc end value of all the vegetation indices.

Table 4 shows the different statistical indices that 
were used to evaluate the estimation equations for 
the crop coefficients when the vegetation indices 
NDVI, SAVI, RDVI and DIGVI were used as the in-
dependent variables. In the case of NDVI, the table 
shows that the RMSD for the estimation of Kc has 
a  value of  0.115  which is  the highest among the 
vegetation indices while the regression coefficient 
(b = 1.320) is the highest among the coefficients of the 
other vegetation indices. The  values of  RMSD  and 
b  indicate that when NDVI  is used as  independent 
variable, it estimates the Kc value with high accuracy. 
It is noteworthy that the statistical evaluation shows 
that of  the four vegetation indices, DIGVI  seems 
to be the best predictor variable in the Kc estimation 
for corn throughout the whole germination period.

To  further discuss the above results, the aver-
age initial crop coefficient value of  the corn for 
the three years of  the research was Kc ini  =  0.350. 
This value was close to  the value proposed by  Al-
lan et  al.  (1998), but the difference was statistical-
ly significant. Piccinni et  al.  (2009) found similar 
Kc ini  values for corn. In  Greek climatic conditions, 
Papazafeiriou (1999) calculated similar crop coeffi-
cient values (Kc ini = 0.40) for the Modified Penman 
method of reference evapotranspiration calculation, 

Table 3. Corn coefficients (Kc) mean values per growth stage and method of calculation during the 3-year research study

Growth stage
Mean Kc values per method Kc values 

from the tables*water balance FAO Eq. NDVI DIGVI SAVI RDVI
Initial 0.353ab 0.353ab 0.313ab 0.359a 0.329ab 0.385a 0.300b

Mid-season 1.174a 1.157ab 1.120ab 1.119ab 1.108bc 1.081c 1.150ab

End-season 0.390a 0.362a 0.651b 0.989c 0.617b 0.609b 0.350a

a,b,c,d means followed by the letter are significantly different at P < 0.05; *according to Allan et al. (1998); NDVI – normalised 
difference vegetation index; SAVI – soil-adjusted vegetation index; RDVI – renormalised difference vegetation index; 
DIGVI – difference infrared – green vegetation index
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while he proposed Kc ini = 0.50 for the FAO Penman-
Monteith one. During the full growth stage, the 
Kc mid ranged between 1.000 and 1.220 and the aver-
age Kc value for the three years of research reached 
1.174. This value did not statistically differ from the 
value proposed by Allan et al. (1998) which was also 
observed by other researchers (Piccinni et al. 2009; 
Trout et  al.  2018). However, Papazafeiriou (1999) 
proposed Kc mid = 0.80  for the Penman method for 
the reference evapotranspiration calculation and 
Kc mid  =  1.05  for the FAO  Penman-Monteith  one. 
The  Kc end  value ranged between 0.350  and 1.000. 
Piccinni et al.  (2009) reported crop coefficient val-
ues in  the final growth stage of  corn growth close 
to 0.90. The high Kc end value could be related to the 
number of  irrigations required at  this growth 
stage due to  the climatic conditions of  the study 
area (Central Greece). Papazafeiriou (1999) pro-
posed Kc end = 0.45 for the modified Penman method 
and Kc end = 0.60 for the FAO Penman-Monteith, 
which is very close to the values of Kc end taking NDVI, 
SAVI and RDVI into consideration having lower val-
ues only from the Kc end of DIGVI (Kc end = 0.989).

The mathematical calculation of  the crop coeffi-
cients for the corn equations as proposed by Allan 
et  al.  (1998) were also used. The  Kc ini  values were 
similar to those of the previous method. At the max-
imum growth stage, the average crop coefficient was 
calculated at  1.157  and the difference was neither 
significant in  comparison with the Kc mid  value ac-
cording to the soil water balance nor in comparison 
with the values proposed by Allan et al. (1998) in the 
FAO 56 tables. The maximum value of the crop coef-
ficient at this stage was calculated at 1.222, which was 
very close to the value measured by Hou et al. (2014). 
The mean value for the fourth stage (Kc = 0.362) was 
almost the same as  proposed by  other researchers 
(Liu and Pereira 2000; Allan et al. 1998).

Based on the correlation coefficient (R2), the esti-
mation equation for the Kc values according to the 
simple linear regression estimated the Kc values with 
high accuracy when vegetation indices were used 
as  predictors. In  particular, when NDVI  is  used, 
it  is  estimated that the regression coefficient has 
a  value of  b  =  1.320  (Table  4) and the difference 
from the corresponding value proposed by Toureiro 
et al. (2017) to estimate the simple crop coefficient 
is significant in their research, while it is quite close 
to the estimated value of the double crop coefficient. 
According to  the analysis of  Pôças et  al.  (2015), 
the value of the regression coefficient b shows that 
Equation  (13) overestimates the value of  the crop 
coefficient. In the present study, it is also noted that 
when NDVI is used as predictor, then the correlation 
coefficient has a lower value than the R2 value when 
SAVI  is  used as  predictor of  the crop coefficient, 
which agrees with the results mentioned by  Pôças 
et al. (2015). Table 4 also shows that SAVI gives a fairly 
good estimate of the Kc values for the growth period 
of corn, a result also reported by Pôças et al. (2015) 
and Zhang et al. (2019). This observation is also con-
firmed by the lower RMSD and RMD values when 
NDVI is used as an independent variable compared 
to the same values when SAVI is used.

Table 4 shows that RDVI also gives acceptable re-
sults in  estimating the crop coefficient. However, 
despite the high correlation coefficient (R2 = 0.875), 
the regression coefficient (b  =  0.469) shows that 
it  underestimates the crop coefficient, in  addition 
to  which the value of  RMSD  (10.034) shows that, 
when this vegetation index is  used, the estimation 
of  the crop coefficient lags behind the equations 
where NDVI  and SAVI  indices are used. The  case 
of DIGVI is interesting. According to Table 4, the re-
gression coefficient b has a value of 1.070, the closest 
value to the unit, which shows that if full irrigation 

Table 4. Statistical indicators of the four equations that estimate the corn coefficients (Kc) values per growth stage (n = 16)

Vegetation indices b R2 Estimation Cross validation
RMSD RMD (%) RMSD RMD (%)

NDVI 1.320 0.852 0.115 8.079 0.109 7.732

SAVI 1.280 0.906 0.092 8.432 0.022 7.788

RDVI 0.496 0.875 0.106 10.034 0.101 9.388
DIGVI 1.070 0.889 0.099 6.783 0.095 6.283

NDVI – normalised difference vegetation index; SAVI – soil-adjusted vegetation index; RDVI – renormalised differ-
ence vegetation index; DIGVI – difference infrared – green vegetation index; b – regression coeficient; R2 – coefficient 
of determination; RMSD – root mean square deviation; RMD – relative mean deviation
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is used with the corn in the region of Central Greece, 
it gives a very good estimation of the Kc values for 
the whole growth period. The correlation coefficient 
R2 had the second highest value (0.889) among the 
R values for the four used indices. RMSD also had 
the second lowest value (0.099) and RMD  had the 
lowest value (6.783) among the used indices as well. 
These results are relevant to the results of the cross 
validation and, finally, DIGVI was the most crucial 
and accurate predictor for the corn crop coefficient 
among the other predictors.

The above analysis confirms that the vegeta-
tion indices can be  used as  independent variables 
to estimate the crop coefficients of corn during the 
whole growing period in the case of Central Greece. 
This is in agreement with the results of other stud-
ies (Pôças et  al.  2015; Toureiro et  al.  2017; Zhang 
et  al.  2019). Figure  4 shows the differences in  the 
corn growth as  a  result of  the different irrigation 
dose according to  the calculation of  the different 
vegetation indices and the data from the multispec-
tral photos and the drone. The  left photo shows 
the differences when the indices, NDVI, SAVI  and 
RDVI, were used while the right one shows the dif-
ferences when DIGVI was used.

CONCLUSION

Four vegetation indices, NDVI, SAVI, RDVI  and 
DIGVI, were used as  independent variables 
and  the  crop coefficient for each growth stage 
of corn as the dependent one in a regression analy-
sis. All  the  equations gave estimations of  the crop 
coefficient with high accuracy as the statistical crite-

ria confirm. Of the four indices, the newly-proposed 
one (DIGVI) seems to  be  very promising as  con-
firmed by the evaluation procedure, since the regres-
sion coefficient was closer to the value of one, com-
pared to the regression coefficient of the other three 
indices. At  the initial stage and at  the stage of  full 
development, the values of the crop coefficient that 
were estimated using the DIGVI method were very 
close to the corresponding values proposed by differ-
ent researchers as well as those calculated using the 
other methods. An  overestimation of  the crop co-
efficient was calculated during the final stage of de-
velopment and remains to  be  further investigated, 
but the average value of the crop coefficients for the 
whole growing season of corn, per vegetation index, 
seems to  be  close to  the values proposed by  other 
researchers in Greek climatic conditions. In the case 
of the Kc end value, based on DIGVI, a weighting value 
equal to 0.65 is proposed to be used so that the final 
values can be close to those from the other vegeta-
tion indices. In conclusion, the multispectral index 
DIGVI is very promising for future use in agriculture 
as  it seems to be more sensitive to different irriga-
tion doses than the other three indices which were 
used in the present research.
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