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Abstract: Weed identification and controlling systems are gaining great attention and are very effective for large pro-
ductivity in the agriculture sector. Currently, farmers are facing a weed control and management problem, and to tackle 
this challenge precision agriculture in the form of selective spraying is much-needed practice. In this article, we intro-
duce a novel framework for a weed identification system that leverages (hybrid) the robust and relevant features of deep 
learning models, such as convolutional neural network (CNN) and handcrafted features. First, we apply the image pre-
processing and augmentation techniques for image quality and dataset size enhancement. Then, we apply handcrafted 
feature extraction techniques, such as local binary pattern (LBP) and histogram of oriented gradients (HOG) to extract 
texture and shape features from the input. We also apply the deep learning model, such as CNN, to capture the relevant 
semantic features. Lastly, we concatenate the features extracted from a different domain and explore the performance 
using different classifiers. We achieved better performance and classification accuracy in the presence of the extreme 
gradient boosting (XGBoost) classifier. The achieved results witnessed the effectiveness and applicability of the given 
method and the importance of concatenated features.
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In farming, weeds identification and their proper 
elimination are the major challenges. Weeds are 
unwanted harmful plants that consume water, soil 
fertility, minerals, sunlight, soil space, and other 
natural resources of  wanted plants and cause the 
reduction of crop yield. In many developing coun-
tries, weed detection is a costly and time-consuming 
process. According to  an  Australian study, around 

AUD  1.5  billion is  spent to  control weeds activi-
ties in terms of herbicides and machinery, and lose 
AUD 2.5 on weeds-affected cultivation production 
Olsen et al. (2019).

Excessive usage of  herbicides can be  hazard-
ous to  the environment and unhealthy for crops. 
To limit the usage of chemical herbicides European 
Union (EU) formulated a  strategy in  2020  known 
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as  the Farm to Fork strategy that aims to  limit the 
usage of chemical herbicides by 50% by 2030 Euro-
pean Commision (2021). In many developed coun-
tries, intelligent weed control systems have been 
employed for precision agriculture, also known 
as spot spraying. The main purpose of this technique 
is to reduce labour costs and potentially limit the us-
age of chemical herbicides. In addition, we can pre-
serve the crop's health and protect the environment 
by using a reduced amount of chemicals.

According to the research studies, about 250 000 
various species of  plants exist, and there are ap-
proximately 260 species related to  the weed plants 
(Lowry and Smith  2018; Zimdahl  2018a; Zim-
dahl  2018b). However, different varieties of  weeds 
and plants with respect to their shapes, colour, size, 
presence of  overlapping, environmental changes, 
plant characteristics, and types of soil are the factors 
that make the intelligent spraying system more chal-
lenging. Due to the advancement in Artificial Intel-
ligence (AI), many farmers adopted the intelligent 
spraying system to  detect and remove weeds from 
wanted plants.

Many researchers have successfully applied the 
concepts of  image processing and computer vision 
to  tackle the problems of weed detection and pro-
posed a variety of AI-based algorithms. The impor-
tant steps in image processing and computer vision 
are image capturing, pre-processing of images, aug-
mentation, features extraction, feature selection, and 
classification. Among these steps, feature extrac-
tion and classification are the most important steps, 
and many researchers proposed effective methods 
based on machine learning (ML, sub-domain of AI). 
ML  algorithms are further categorised into two 
types: (i)  Extracting handcrafted features from the 
given raw data termed as conventional ML methods 
and other methods automatically extracting features 
that help to classify data points known and (ii) deep 
learning (DL) methods (Janiesch et al. 2021). Both 
ML and DL-based methods have their own strengths 
and  weaknesses. Representations of  hand-crafted 
local features are considered very effective in deal-
ing with problems, such as background clutter, noise 
and illumination changes, and orientation changes. 
In  addition, expert knowledge can also be  embed-
ded during the procedure of feature extraction and 
require a small dataset to train the model. However, 
feature extraction/selection is  a  very cumbersome 
process and needs expert domain knowledge (Aver-
sano Arif et al. 2019). Deep-learning-based methods 

automatically learn a high level of semantic informa-
tion from training data without applying any heu-
ristic rules. The ability of diverse feature generation 
at multiple hierarchal levels can be applied to per-
form different tasks, and the detection/identification 
of  weeds is  one of  them. However, deep-learning-
based models require huge data and computational 
power for training.

Early research works mostly related to hand-craft-
ed features, and many researchers used these tech-
niques to  classify weeds/crops based on  different 
characteristics, such as shape, colour, texture, spec-
trum, edges, and spatial and geometrical features. 
Yang et al.  (2017) and Sabzi et al.  (2018) proposed 
a  method based on  colour and texture features. 
Le et al. 2019; Le et al. 2020 applied a  local binary 
pattern (LBP) for the extraction of  texture features 
and successfully differentiated between crop and 
weed. Some research studies (Hamuda et  al.  2017, 
Bakhshipour and Jafari 2018; Chen et al. 2021) com-
bine the different shapes and textures-based features 
and obtain remarkable results. Ma et al. (2016) iden-
tified the grape leaves by  combining a  histogram 
of oriented gradients (HOG) features with a support 
vector machine (SVM). He  et  al.  (2013) combined 
the multi-source information of  different features 
like texture, shape, and fractal dimension with SVM.

Due to the remarkable success of DL, its applica-
tion has also been extended to the agricultural field 
(Aversano et al. 2020; Fu et al. 2020). Recently, con-
volutional neural networks (CNNs) have been the 
most widely applied networks to  solve weed clas-
sification problems. Researchers adopted differ-
ent variants of CNNs, such as AlexNet (Krizhevs-
ky et  al.  2012), GoogLeNet (Szegedy et  al.  2015), 
ResNet-50 (He  et  al.  2016), Inception-v3 (Szegedy 
et  al.  2016), VGG-Nets (Simonyan and Zisser-
man 2015), and achieved high performance. Olsen 
et al.  (2019) developed a weeds' image dataset and 
trained ResNet-50  architecture to  get real-time 
performance. Tang et al. (2017) proposed a cluster-
ing-based method using the K-means) feature with 
multilayered CNN  architecture. Zou et  al.  (2021) 
proposed a  segmentation algorithm to  cluster se-
mantic features using a simplified U-net to separate 
weeds and plants in images. You et al. (2020) intro-
duced another segmentation model for weeds and 
crop identification using deep neural network mod-
els. These DL-based methods have shown impres-
sive improvement in  solving the problem of  weed 
classification and achieved promising performance. 
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However, more accurate and effective classification 
models are required to enhance weeds and plants' 
identification/classification accuracy. In  this re-
search work, we  introduce a  model in  the context 
of  intelligent selective spraying based on  hybrid 
features (dense and handcrafted features) for the 
classification of  weeds and plants and argue that 
the leveraging of  features extracted from different 
channels can increase the generalisation and rec-
ognition ability (Arif et  al.  2019; Wu  et  al.  2021). 
Recently, Wang et  al.  (2022) developed a  new 
dataset for weeds and utilised YOLOv3,  YOLOv5, 
and Faster R-CNN  for weed identification. Razfar 
et al. (2022) proposed a new 5-layer CNN architec-
ture with few training parameters and achieved bet-
ter results. Yang et al. (2022) utilised a combination 
of  object detection networks (Faster R-CNN  and 
YOLOv3) and successfully discriminated the grass 
weed from plants.

This research work has emphasised the extrac-
tion and leveraging of handcrafted and CNN-based 
features on the basis of the argument that a combi-
nation of features captured from different channels 
can really increase the generalisation ability of weed 
and plant classification. Handcrafted features are 
well capable of  extracting low-level features, such 
as edges, shape, and texture-based features, and the 
DL method provides us with dense hierarchal fea-
tures. Firstly, we perform the image pre-processing 
step such as noise suppression using a median filter 
and image quality enhancement (pixel-wise) using 
contrast-limited adaptive histogram equalisation 
(CLAHE). Then, to increase the size of the dataset, 
we  perform some augmentation techniques, such 
as flipping and rotation. Next, handcrafted features 
are extracted from RGB  images using LBP  (Ojala 
et  al.  1996) and HOG  (Dalal and Triggs  2005) for 
texture and shape features, respectively. High-
level dense features are extracted using  CNN. Af-
ter concatenation of  features from both domains 
(handcrafted and DL), we apply the extreme gradi-
ent boosting (XGBoost) classifier (Chen and Gues-
trin  2016) and obtain binary classification results 
in the form of weed or plant. Research contributions 
of our work are listed as follows:

(i) We successfully combine the handcrafted fea-
tures (HOG and LBP) with CNN-based features and 
obtain superior performance.

(ii) We apply the image processing and augmen-
tation method for cleaning and image enhancement 
and also to enlarge the dataset size.

The aim of  this research study is  to  explore and 
verify the effectiveness of hybrid features (extracted 
from different domains) to  improve the identifica-
tion accuracy between weeds and plants to benefit 
the agriculture sector.

MATERIAL AND METHODS

To train our model, we used the Deep Weed data-
set collected by an Australian research group Olsen 
et  al.  (2019). However, we  have performed some 
pre-processing steps to  increase the size, general-
ity, and variability of the datasets. We use Raspberry 
Pi-3 with a Pi camera of version 2.1 (Raspberry, Tai-
wan) for image acquisition with a video resolution 
of 1 280 × 720.

To increase the size of the dataset (new weeds im-
ages) synthetically, we  perform the data augmen-
tation method. It  is an  ideal approach to avoid the 
overfitting effect during the learning process. In ad-
dition, the augmentation methods bring variability 
to the existing dataset and increase the classification 
accuracy, and address the issues of unbalanced data. 
We utilise re-sizing, rotation, flipping, and colourisa-
tion as augmentation processes in our experiments.

In our experiment, each original image from the 
training subset is re-sized from 1 280 × 720 (original 
image size) to 224 × 224 as our proposed model ac-
cepts a fixed size input of 224 × 224 pixels. Each im-
age is rotated with angles 45, 90, 180, and 270° to en-
large the datasets with different orientations. Each 
image was vertically and horizontally flipped with 
50% probability, and in  the case of  the RGB  image, 
each colour channel was randomly shifted about 
10% of  the maximum available 8-bit colour encod-
ing range [0, 255]. To prepare the training and test-
ing  set, the target classes are marked, and labels 
of  each sample image are obtained. We  adopt the 
(k)-fold cross-validation, and all the original images 
are divided into five sub-sample sets. These sub-sets 
with original images (weeds and plants images) are 
partitioned into 70, 10, and 20% split of  training, 
validation, and training sets, respectively. The valida-
tion subset is  used to  monitor the training process 
and overfitting reduction. The validation subset also 
ensures that image samples are random and not re-
peated in a test subset. The 20% of images in our test-
ing subset were not used during the training process. 
This process is essential to minimise bias errors.

Proposed methodology. This section discusses our 
proposed framework, and its working flow is  given 
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in Figure 1. The main objective of this article is to show 
the effectiveness of hybrid (combined/concatenated) 
features extracted from handcrafted and CNN-based 
methods to  improve the classification accuracy be-
tween weeds and plants. We  separately extracted 
the features HOG (for shape features), LBP (for tex-
ture features), and CNN (discriminative) features, and 
then we  fuse/concatenate all of  them to make com-
bined feature descriptors before feeding them to our 
classifier. We  provide a  detailed description of  each 
step, such as pre-processing and augmentation meth-
ods, extraction of handcrafted features using LBP and 
HOG techniques, extraction of high-level features us-
ing CNN, merging of features, and classification.

To obtain a better classification performance, we ap-
ply image pre-processing (noise suppression and im-
age enhancement) and augmentation techniques (to 
increase and balance the size of data). This step is very 
important as raw data may distract the classification 
model and result in a high misclassification rate. Dur-
ing the acquisition process, images may be damaged 
by  several factors, such as  poor resolution, noise, 
improper lighting, etc. First, we  apply the median 
filter (non-linear) on  raw images to  preserve the 

edges and noise suppression for a clear visual appear-
ance. In median filtering, the 3 × 3 tensor of an im-
age is arranged in ascending order to take the mean, 
and the middle value of a selected tensor is replaced 
by the mean value. Next, for image contrast enhance-
ment and noise amplification reduction, we  apply 
CLAHE (Pizer et al. 1990), which focuses on all ar-
eas (pixels) of the given image and solves the uneven 
greyscale distribution in an image. In addition, it lim-
its the over-amplification of  contrast. In  CLAHE, 
images are segmented into non-overlapping regions 
of size 8 × 8, and a histogram of each region is com-
puted. A threshold value is  selected, and if  the grey 
levels in the histogram exceed the value of the thresh-
old, then we  clip the  value, and the excesses value 
against the threshold value is evenly distributed to all 
neighbouring grey levels. In this way, noise or over-
amplification of  the contrast can be  controlled. Fi-
nally, the neighbouring regions combine with each 
other with the interpolation method (to enhance 
the mapping function) to avoid the boundary effect. 
CLAHE does this by setting a threshold. If some grey 
levels in  the image exceed the threshold, the excess 
is evenly distributed to all grey levels.

Figure 1. Illustration of the overall workflow of the proposed model

Conv – convolution; ReLu – rectified linear unit; HOG – histogram of oriented gradients; LBP – local binary pattern
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In our model, to increase the data size and tackle 
the unbalance data structure (in case of any dominat-
ing class to increasing any inferior class), we adopt 
data augmentation techniques, such as  flipping, 
rotation, and colourisation. This process generates 
the data/images synthetically with different orien-
tations, scales, and colours, which is  very impor-
tant to  avoid overfitting during the training and 
validation process of deep learning models. In our 
experiments, each image is  rotated in  the range 
of [+360°, –360°] and zooms up to 20% of the orig-
inal image's dimension. Each image was vertically 
and horizontally flipped with 50% probability, and 
in the case of the RGB image, each colour channel 
was randomly shifted to about 10% of the maximum 
8-bit colour encoding range [0, 255]. Some samples 
of the augmentation process are given in Figure 2.

In the next step, we present effective ways to extract 
relevant handcrafted features at minimal computing 
cost, which can efficiently satisfy the current weed 

detection/classification requirements. Handcrafted 
features mean manually extracted features (not au-
tomatically extracted) using conventional machine 
learning algorithms, such as LBP and HOG in our 
case. Handcrafted features allow embedding do-
main/expert knowledge in  the process of  feature 
extraction. Handcrafted features have optimal inter-
class variance. Their space is well-portioned. Most 
of  these handcrafted features can be  categorised 
into (i)  geometric features, (ii)  texture features, 
(iii) shape features, (iv) gradient features, and (v) ap-
pearance features. In our case, shape and texture are 
more relevant and significant features.

The LBP is  an  effective technique to  extract the 
texture and grey-scale contrast in  an image. Oth-
er important properties of  LBP  features include 
computational efficiency and robustness against 
illumination conditions. LBP  descriptor works 
in a 3 × 3 window which uses the central pixel as the 
threshold of the neighbouring pixels. In a 3 × 3 win-

Figure 2. Results of different augmentation methods with sample frames: (A) original frames of plants and weeds, 
(B) results of CLAHE, (C) results of colour shifting, (D) results of flipping, and (E) results of rotation

CLAHE – contrast-limited adaptive histogram equalisation

(A)

(B)

(C)

(D)

(E)
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dow, for every pixel (x, y) with N neighbouring pixels 
at R radius, it computes the difference in the inten-
sities of the central pixel (x, y) with the neighbour-
ing N  pixels, refer to  Equation  (1). If  the resultant 
difference is negative, it assigns 0 to the pixel (x, y) 
or  1  otherwise [Equation  (2)]. Lastly, it  converts 
the central pixel value with its corresponding deci-
mal value.

( )
1 

  0

LBP ( , )  2  
N

p
n c

n

N R s i i
−

=

= −∑ 	 (1)

where: in – neighbouring pixels ; ic – current pixels.

( )
1 ; if 0

f 0 ; otherwise
x

x
>= 


	 (2)

The HOG  feature descriptor emphasises the 
structure/shape of the objects. It computes the gra-
dient and orientation of edge pixels. These orienta-
tions give information related to  the global shape 
of an object presents in the image. The image of size 
224  ×  224  is passed through the HOG  feature de-
scriptor. The descriptor divided the image into sev-
eral blocks. Each block consists of 16 × 16 cells and 
each cell contains a 16 × 16 number of pixels for each 
block, the gradient with its orientation is computed. 
Lastly, a histogram is created using the gradients and 
orientations for each region separately, given the 
name histogram of oriented gradients.

In the next step, we extract complex and dense fea-
tures using the CNN model. CNN is the type of feed-
forward network comprised of end-to-end trainable 

multi-layer architecture that follows the hierarchal 
neural mechanism of the human brain that transfers 
information from low-level to high-level and repre-
sents discriminative information.

CNN network usually adopts two techniques for 
training, i.e.  transfer learning (TL) and de  novo. 
In  de  novo techniques the CNN  model is  trained 
from scratch and optimally learns features from the 
given dataset. TL adopts pre-trained freely available 
CNNs, such as  AlexNet, GoogLeNET, VGG-Net, 
ResNet, and Generative adversarial network (GAN) 
and deals with small data. TL technique allows to re-
train of only a few layers (usually the last layers are 
re-trained) of the pre-trained CNN model in order 
to adapt it to a given problem and dataset. This tech-
nique is helpful when the given dataset is not large 
enough to train robustly all layers of CNN (Pan and 
Yang 2010).

In our method, we  use the TL  approach and 
deep-learned features are extracted from VGG-16. 
CNN  mainly consists of  five parts: a  convolution 
layer (with channels 64, 128, 256, and  512), max-
pooling, a  fully connected layer, an  output layer, 
and an activation function. Our CNN network com-
prises 18 layers that include 12 convolutional layers, 
5 max-pooling layers, one fully connected (FC) lay-
er, and one output layer with the softmax function 
to calculate prediction probabilities. It takes an im-
age of the size 224 × 224 and 3 × 3 convolutions with 
a 1-pixel stride and 1 padding. Rectified linear unit 
(ReLU) serves as an activation function, with Soft-
max classifier at  the last layer. The  details of  our 
CNN architecture are depicted in Figure 3.

Figure 3. Illustration of CNN architecture used in our model

CNN – convolutional neural network; conv – convolution; pool – pooling
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Next, we  concatenate all (HOG, LBP, and CNN-
based) features in the form of feature descriptor, and 
then we train different classifiers, such as XGBoost, 
K−nearest neighbour (KNN) (Cover and Hart 1967), 
SVM (Vapnik et al. 1999), and attained reasonable re-
sults. However, XGBoost achieved superior perfor-
mance when using hybrid features. It is a tree-based 
ensemble classifier in which new learners are added 
to minimize the errors made by the prior learners. 
XGBoost works similarly to a gradient-boosting al-
gorithm that predicts the residuals of prior learners 
and adds them to the final predicted result. It mini-
mizes the loss of each learner by using a gradient de-
scent algorithm (Kiefer and Wolfowitz 1952).

RESULTS AND DISCUSSION

The progress of the two models, i.e. VGG-16 and 
our introduced hybrid model in terms of accuracy 
and loss (cross-entropy) after successive epochs 
during the training process is depicted in Figure 4. 

The top two figures (4A–B) show the improvement 
in  training accuracy of  the two models for every 
mini-batch at  125 epochs. The  accuracy achieved 
for training and validation of our proposed model 
(hybrid) is  95.5% as  compared to  the state-of-the-
art VGG-16  model of  94.4%. We  can also analyse 
from the figure that the training process is  quite 
smooth, parallel, and consistent for training and 
validation of the proposed model. The two bottom 
figures (4C–D) illustrate the training and valida-
tion loss of  the two models. Our proposed model 
shows the lowest training (0.07) and validation 
(0.09) loss as compared to the VGG-16 architecture 
of training (0.10) and validation (0.23) with a num-
ber of 125 epochs. The underlying reason for better 
scores for training and validation accuracy of  our 
introduced model is an equal and effective contri-
bution of  the features achieved from two different 
domains, i.e.  handcrafted and deep learning, and 
provide the intrinsic capabilities to  obtain better 
performance.

Figure 4. Graph visualisation of performance evaluation of VGG-16 model and proposed model. The accuracy and 
loss representation of (A), (C) VGG-16 model; (B), (D) proposed model
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We validate the performance of our model under 
different light conditions to  show the effectiveness 
and consistency of our proposed model under differ-
ent light intensities (conditions). This is one of our 
exploration experiments and the main reason for the 
conduction of this experiment is that under certain 
light conditions, some sample weeds look similar, 
such as  Snakeweed and Chinese apple, so  the rec-
ognition accuracy may be  affected due to  shadow 
size variations and illumination changes. We  have 
captured some additional images using the Pi cam-
era with the same resolution as  our adopted data-
set. We  selected morning time (6:30  to  7:00  a.m.), 
afternoon time (12:00  to  12:30  p.m.), and even-
ing time (4:00  to  4:30  p.m.) mostly in  the summer 
season of Pakistan and there are variations in  light 
intensity. We  capture the images in  the morning, 
noon, and afternoon time. We have captured a total 
of 240 images including 2 plants (beetroot and rice) 
and 4 (Parkinsonia, Chinese apple, Siam weed, and 
snakeweed) that are available in  a  dataset and can 
be  found in  different regions of  Pakistan. We  cap-
tured 40 samples of each with different orientations 
and light conditions (morning, afternoon, and even-
ing). We utilized 70% for the training of the model 

and 30% for testing. We  observe that the average 
performance was almost similar and consistent, 
demonstrating that our model was not affected un-
der different light conditions. Table 1 illustrates the 
performance of  our framework and obtained con-
sistent results with superior classification accuracy.

Figure  5  depicts the confusion matrix of  the 
competitive VGG-16  test phase and the proposed 
framework (hybrid features) for weeds and plants 
(beetroot and rice in this experiment) classification. 
The  x-axis represents the predicted labels and the 
y-axis denotes the ground truth labels. Our model 
obtains 95.5% for 2 classes and it is worth noticing 
that classes (weeds and plants) with similar colour, 
pattern, texture, and shape are more easily confused 
with each other. The main reason for misclassifica-
tion is the similarities of the features and represen-
tations among the leaf structure of weeds and plants. 
In addition, the number of training samples is very 
small, so the achieved results are a bit confusing and 
some level of misclassification occurs. In our experi-
ment, among 1 500  images our introduced model 
has consistent and better true positive and true 
negative values and lesser test samples are misclas-
sified as compared to the competitive VGG-16 net-

Table 1. The performance comparison under different light conditions

Experiment No.
Accuracy (%)

morning period noon period afternoon period

Beetroot 94.5 94.1 94.0
Rice 93.5 93.9 94.1
Siam weed/snakeweed 94.0 94.2 94.5
Parkinsonia/Chinese apple 93.1 94.0 93.8

Mean accuracy 93.7 94.0 94.1

Figure 5. (A) Confusion matrices comparison, (B) proposed method VGG-16
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work. Our proposed model achieved a classification 
accuracy of  95.5% as  compared to  the competitive 
CNN network with an accuracy of 94.4%.

Next, we  compare the performance of  different 
feature descriptors, such as HOG, LBP, and VGG-16, 
and their possible combinations using three classifi-
ers (on an individual basis) SVM, KNN, and XGBoost. 
Table  2  reported the average recognition accuracy 
(%) for each case. We  trained the proposed model 
using individual feature descriptors (HOG, LBP, and 
VGG-16) and also with their overall possible combi-
nations (as given in the table). Next, we compute the 
recognition accuracy using three classifiers on an in-
dividual basis as exploration results and reported the 
attained results. According to  the obtained results, 
we attained better results in the case of only VGG-16 
as compared to the individual case of HOG and LBP, 
and also with their combination. However, the com-
bination of all featured descriptors (HOG, LBP, and 
VGG-16) that contributes to  the shape, texture, 
and  discriminative features respectively shows the 
highest recognition accuracy when applied to  XG-

Boost which is higher than VGG-16 and improved 
the recognition accuracy.

We further analyse the validation and effective-
ness of our proposed model and compare classifica-
tion accuracy against the models and their results 
reported by Olsen et al. (2019). We adopted the same 
distribution of datasets in terms of training, valida-
tion, and testing. Results in terms of average classi-
fication accuracy (%) are listed in Table 3. We select 
8 weeds from the dataset according to  their inter-
class variations and similarities as given in the table. 
The classification accuracy is observed to vary from 
weed to weed due to the weeds having less visible 
features and images given in the dataset overlapped 
with plants. ResNet-50 obtained better results than 
Inception-v3. We can also observe that GoogLeNet 
(Szegedy et  al.  2015) achieved almost similar re-
sults, however, the proposed model achieved results 
of  95.5  average classification accuracy exceeding 
state-of-the-art which is  due to  the complimen-
tary information from the concatenation of  hy-
brid features.

Table 2. Performance comparison of different feature descriptors with classifiers in terms of classification accuracy (%)

Descriptor
Classifiers

SVM KNN XGBoost
HOG (Dalal and Triggs 2005) 69.0 66.0 70.1
LBP (Ojala et al. 1996) 71.0 68.4 74.0
HOG + LBP 75.4 72.0 77.8
VGG-16 (Simonyan and Zisserman 2015) 83.9 78.4 84.6
HOG + LBP + VGG-16 87.7 79.7 94.5*

* XGBoost classifier obtained the highest classification accuracy in the presence of all combined features (HOG+LBP+VGG-16); 
SVM – support vector machine; KNN – K−nearest neighbour; HOG – histogram of oriented gradients; LBP – local binary pattern

Table 3. Performance comparison of the proposed model in terms of average classification accuracy (%)

Name of weed Inception-v3
(Olsen et al. 2019)

ResNet-50
(Olsen et al. 2019)

GoogLeNet  
(Szegedy et al. 2015) Proposed method

Chinee apple 85.3 88.5 91.7 93.5
Lantana 94.4 95.0 96.0 96.0
Parkinsonia 96.8 97.2 95.9 97.0
Parthenium 94.9 95.8 95.6 96.1
Prickly acacia 92.8 95.5 94.7 95.9
Rubber vine 93.1 92.5 94.8 94.5
Siam weed 97.6 96.5 96.9 97.0
Snake weed 88.0 88.8 94.6 94.4

Average accuracy 92.8 93.7 95.0 95.5*

* The proposed method achieved the highest average accuracy as compared to state-of-the-art deep learning-based model 
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CONCLUSION

The proposed automated method addresses the 
problem of inaccurate recognition of weeds in agri-
culture. In  the weed detection process, the extrac-
tion of texture, shape, and complex patterns is very 
crucial as weeds are very similar to plants. Very few 
research studies are available in  the existing litera-
ture that successfully combines the features from 
a different channel with better results. This research 
work intelligently combines the features extracted 
from different domains, such as  handcrafted and 
deep learning, and extracts the valid and relevant 
features that lead to high weed recognition accuracy. 
The introduced method achieved 97% training accu-
racy and 95.5% testing accuracy in predicting weeds. 
We performed different exploration experiments us-
ing concatenated features in the presence of different 
state-of-the-art classifiers and the XGBoost classi-
fier secured the highest weed classification accuracy 
of  over 95%. Our attained results witnessed that 
hybrid features extracted from the different chan-
nels/domains can really boost weed classification 
accuracy as illustrated by obtained results. In future 
work, we will examine the performance of our meth-
od using a  large dataset. We  will also enhance the 
capabilities of our proposed models in case of weeds 
and plants overlapping and occlusion. We can also 
consider the detection rate (speed) to  analyse the 
computational speed (frames processed/s) of  our 
proposed model and compare it with other state-of-
the-art existing models.
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