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Abstract: In our study location, Merauke Regency, the easternmost city in Indonesia, the sago palm is associated with 
different types of ecosystems and other non-sago vegetation. During the harvesting season, the white flowers blosso-
ming between the leaves on the tops of palm trees may be distinguished manually. Four classes were determined to ad-
dress the visual inspections involving different parameters that were examined through the metric evaluation and then 
analysed statistically. The computed Kruskal-Wallis test found that the parameters vary in each network with a P-value 
of 0.00341, with at least one class being higher than the others, i.e., non-sago with a P-value of 0.044 with respect to pre-
cision, recall, and F1-score. Thus, the general linear model (GLM) was tested specifically in trained Network-15 and 
Network-17, which have similar parameters except for the batch size. It indicated the two networks' differences based 
on their prediction results, classes, and actual images. Accordingly, a combination of learning rate (Lr) and batch size 
improved the reliability of the training and classification task.
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The sago palm (Metroxylon Sagu Rottb) is  one 
of  the environmentally-conscious palm tree species 
that may grow wildly in the forest, primarily in South-
east Asian countries and also in Papua New Guinea 
(PNG). Several earlier studies revealed sago's food 
and non-food industry features (Karim et  al.  2008; 
Ehara et al. 2018). Visible parts of the tree can be uti-
lised, such as the bark, leaves, starch, and sago waste. 
The bark can be used for traditional flooring, walls, 
or craft paper. Further, the leaves are used for roof-
ing, and the waste is  for animal feed or  compost. 
Sago's palms contain a lot of starch utilised for tradi-

tional food, cakes, and beverage industries; thus, as   
a vital resource for the agricultural industry, biope-
sticides, and the bioethanol industry (Mofu and Ab-
bas 2015; Metaragakusuma et al. 2016; Jonatan et al. 
2017; Amin et al. 2019). In our selected study loca-
tion, Merauke Regency, the easternmost city in Indo-
nesia, sago palm trees typically develop in wild stands 
with a height of 7–15 m with different types of eco-
systems, such as  peatland areas or  swampy forests. 
Figure 1 presents the sago palm in  the field work, 
which may live with other vegetation (Figure  1A) 
or non-sago palm vegetation (Figure 1B).
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The harvesting season may be distinguished man-
ually by  the white flowers blossoming between the 
leaves on the tops of palm trees. Several studies were 
focused on investigating the sago palm's condition, 
for instance, by  extracting satellite imageries com-
bined with suitable methods, such as  support vec-
tor machine (SVM), object-based image analysis 
(OBIA), and image processing (Hidayat et al. 2018). 
Nevertheless, the study pointed out that morphol-
ogy and similarity with other palms could affect the 
classification result. Moreover, the maximum likeli-
hood as a classifier in  sago palm distribution from 
the satellite was studied in  the Philippines (Santil-
lan and Makinano-Santillan 2016). Nevertheless, the 
previously related works were not applicable to our 
fieldwork settings. The most specific problem is the 
challenge of harvesting time prediction that is prac-
tically defined through the morphology of  sago. 
Nonetheless, due to the wild stand of the sago, the 
height of the sago surrounded by swampy areas could 
influence the result. Another sago palm detection 
model uses the convolutional neural network (CNN) 
architecture, namely Alex Net, Xception, ResNet 
and CraunNet, to identify the maturity of sago ob-
tained from unmanned aerial vehicle (UAV) images 
(Wahed et al. 2022). This related research addressed 
identifying the maturity of sago palms through their 
canopies rather than harvest time prediction. CNN, 
frequently referred to as a ConvNet, is a type of feed-
forward neural network commonly used for analys-
ing visual objects. Each image in CNN is represent-
ed as  an array of pixel values. The CNN has many 
layers, generally consisting of  a  convolution layer, 
rectified linear unit (reLU) layer, pooling layer, flat-
ten layer and fully connected layer (Kneusel 2021). 

Today, deep learning based on CNN study is enor-
mously used in  image classification tasks or object 
detection. In  general, deep learning in  object de-
tection is  divided into three categories: (i) CNN: 
A  CNN deforms learned features according to  the 
initial data and applies 2-D convolutional layers, ide-
ally designed to process 2-D data, for example, im-
ages. (ii) Segmentation, a deep learning method that 
associates a label or category with every pixel in an 
image; and (iii) object detection method, which re-
fers to using deep learning to provide a specific lo-
cation of an object in an image (Zheng et al. 2021). 
According to  a  study review by  (Yasir et  al.  2023), 
the most prevalent deep learning method developed 
to cope with remote sensing image processing, for 
example, satellite data or  data from an  unmanned 
aerial vehicle (UAV), is CNN. The feature knowledge 
in CNN can be transferred from one domain to an-
other using the transfer learning technique. Trans-
fer learning (TL) can be  investigated as  a  process 
of refining the target prediction function ft (.) based 
on Ds and Ts , with Ds ≠ DT or Ts ≠ TT through knowl-
edge transfer. Figure 2 shows the concept of transfer 
learning as follows.

The two components of  a  domain are a  feature 
space X and a  marginal distribution of  probabili-
ties P(X), where X= {x1, x2..., xn-1, xn}, n  represents 
number of feature vectors in X. Similar to D, T con-
tains two components, i.e., label space Y and a pre-
dictive function. Pairs of  feature vectors and labels 
are used to train the predictive function ft (.), a do-
main D = {X, P(X)} and a  task T = {Y, f(.)} accord-
ingly. Henceforth, the source domain can be  de-
scribed as DS = {X, PS(X)} with an associated source 
task TS = {Y, fs (Â)}, equally the DT = {X, Pt(X)} with 

Figure 1. Sago palm in Tambat district at Merauke Regency, Papua province of Indonesia: (A) sago forest with non-
sago vegetation, and (B) non-sago (other vegetation)

(A) (B)
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a related source task TT = {Y, ft (Â)}. In  this study, 
transfer learning based on  the CNN model was 
performed to distinguish four visible morphologies 
of sago and one class of other vegetation in the sago 
forest area. Different parameters were implemented 
in training five networks, namely epoch, batch size 
and learning rate, in  training five networks. More-
over, the results were analysed statistically to inves-
tigate whether or not the various parameters affect 
the prediction results. The research dataset in  this 
study is  self-made from UAV images and ground 
photographs, including sago leaves, trunks, flowers 
and non-sago images, which aims to  differentiate 
the visual morphology of sago from other vegetation 
by  utilising the transfer learning technique-based 
CNN model. 

MATERIAL AND METHODS

The images were captured from the ground 
and a  UAV with a  certain parameter. The UAV 
was integrated with the mission flight planner, 
and it  flew over a  sago area of  74.600 m2 in  Me-
rauke Regency, Papua Province of  Indonesia, 
(location:  137°38'52.9692' E–141°0'13.3233' E, 
6°27'50.1456' S–9°10'1.225' S, collecting a  total of 
661 images in  two flights. The Autel drone (EVO 
II Pro, Autel Robotics, China) was used to fly from 
9:00 a.m. to 11:30 a.m., using a double grid with 70 
and 80% of  front overlap and 70 and 60% of  side 
overlap at an altitude of 60.3 m. Afterwards, all the 
images were transferred to  computer storage for 
preprocessing by using pix4dmapper (version 4.8). 
In this stage, all data were divided into three types, 
namely data for testing (103 images), training (441 
images) and validation (132 images). Image segmen-
tation, as well as  a cropping process, were required 
to designate the region of interest (ROI). Thus, the 

images were labelled into four classes, namely non-
sago (110 images), sago flowers (110 images), sago 
leaves (111 images) and sago trunks (110 images) 
through makesense.ai (www.makesense.ai). Finally, 
all the classes of images are uploaded to the MAT-
LAB software (MatlabR2022a) directory for further 
processing.

In this experiment, a  validation frequency of  4 
was used, corresponding to each category class, i.e., 
non-sago (NS), sago flowers (SF), sago leaves (SL) 
and sago trunks (ST), respectively. Other param-
eters were set up: momentum = 0.9 and learning 
rate (lr) bias coefficient = 10. Further, the weight lr 
factor was 1, and the bias lr factor was 10. The net-
work layers used in each trained Network (Table 1) 
were developed, referring to five convolutional lay-
ers. Three fully connected layers within the activa-
tion layer, namely ReLU layers, were added after 
each convolution layer; further, two cross channels 
normalisation after ReLU layers, pooling layer with 
stride [2 2], and padding [0 0 0 0]. The rest of  the 
layers consisted of  50% dropout layers, fully con-
nected to four layers, SoftMax for probability, and 
cross-entropy loss function for the classification 
output. The total layers were 25 layers and 68 lay-
ers arranged in MATLAB environments and trans-
ferred from AlexNet and SqueezeNet architecture 
as  a  base domain; thus, all networks were trained 
according to  each parameter, as  displayed in  Ta-
ble  1. Network-10 and Network-15 were designed 
with 68 layers, while the rest networks with 25 lay-
ers. The layers designed are as follows:

Batch normalisation layers. To  normalise the 
activations of  each channel, the layer initially de-
creases the mini-batch mean and divides it  by  the 
mini-batch standard deviation. Following that, the 
layer adjusts the input by  a  learnable offset  β  and 
scales it  by  a  learnable scale factor  γ.  β  and  γ  are 
learnable parameters that are changed throughout 
training the networks. use batch normalisation lay-

Source domain
(DS)

Source task
(TS)

Target task
(TT)

Target domain
(DT)

Instance-based

Model-based

Parameter-based

Feauture-based

Knowledge transfer

Figure 2. The concept of transfer learning with modification
Source: Li et al. 2022

Network name
Training set up

epoch learning 
rate

minimum  
batch size

Trained Network-10 10 0.001 64
Trained Network-15 10 0.0001 10
Trained Network-17 10 0.0001 64
Trained Network-19 15 0.0001 64
Trained Network-22 8 0.0001 10

Table 1. Parameter used in experiment
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ers between convolutional layers and nonlinearities, 
such as ReLU Layers, to accelerate the convolutional 
neural network training process and reduce net-
work initialisation risk. To  normalise the elements 
xi in a min batch W={x(1, …  ) xm}, first, the batch nor-
malisation operation determines the mean μi:

1

1 ( )m
W ii

x
m =

µ = ∑ 	 (1)

Variance σW
2 over the independent dimensions of spa-

tial, time, and dimension observation for each channel: 

2 2
1

1 ( )m
W ii Wx

m =
−µσ = ∑ 	 (2)

It then calculates the normalised activations as the 
following equation:
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If parameters to  be  learned are described by  α, 
β, then to  accommodate the potential data inputs 
with a zero mean and a variance of the unit are not 
ideal during the processes that follow the batch nor-
malising. The batch normalising operation scales 
and shifts the activations employing a  conversion 
as shown in the equation:

ˆ i ly ax= +β 	  (4)

Activation layers. Generally, there are three ac-
tivation functions, i.e., sigmoid, Tanh activation, 
and ReLU. Sigmoid and Tanh activation is  usually 
used in Recurrent neural networks, while ReLU lay-
er is  preferred in  multilayer perceptron and CNN. 
ReLU Layer is one activation function that performs 
the element-wise operation; for example, it adjusts 
all negative pixels to zero. Otherwise, it returns the 
value as  a  rectified feature map. The relationship 
in this layer can be formulated as seen below:

0( ) max ( , )RELU x x= 	 (5)

In multiclass classification problems, particularly 
the prediction of  the probability of  each instance, 
the softmax layer as an output layer is used:
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eP x
e
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=
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where: x – the values from layers in  the output of  the 
i-dimension; n – the size of the dimension referring to the 

size of  classes. In  a  classification task, the sum of  the 
probabilities equals 1. 

Pooling layers. The pooling layer is  an  operation 
of down-sampling to downsize the dimensions of the 
rectified feature map. Filters and strides are also used 
at  the pooling layer to  identify various features such 
as corners, edges, leaves, etc. Since the pooling layer 
is  used to  decrease a  certain number of  parameters 
to  train, the computation requirements are also re-
duced. There are two kinds of pooling layers, namely, 
the average pooling and the max pooling layer. The max 
pooling layer is most commonly employed to select the 
largest value in each filter region. Two factors make the 
pooling layer of paramount importance to CNN. First, 
without diminution, the computation would crash 
when convolutional layers capture duplicate informa-
tion. Second, the duplicate features would degrade the 
redundant information's ability to  describe features. 
As a result, implementing a pooling layer is necessary 
for reducing the dimensions of features.

Fully connected layer. Fully connected layers 
are often positioned near the output layers. In  the 
image classification task, this layer acts as a classi-
fier and the final output layer. It receives input from 
the pooling or  convolution layer's final output be-
fore converting it  to a single vector through a flat-
tened patch. The flatten patch function is utilised for 
transforming all of the dimensional arrays produced 
by the pooling feature map into a one-dimensional 
linear vector. Thus, flattening the matrices provides 
the input to  the fully interconnected layer, which 
classifies the object.

Dropout layers. Like other regularization tech-
niques, the dropout is preferable for cases when the 
training data is  insufficient and the model is prone 
to overfitting. During training, this layer sets a num-
ber of  its output characteristics to zero by deleting 
the forthcoming node in the layer as defined in their 
dropout rate. It employs the majority of  layers, en-
compassing convolutional, densely fully connected, 
and recurring layers such as  the long short-term 
memory (LSTM) structure. 

A  function of  loss. A  good model is  defined 
by a smaller loss function. Otherwise, the model's pa-
rameters need to be adjusted to reduce the loss. The 
loss during a single training process is called the loss 
function, whereas the average loss across all train-
ing data sets is referred to as the cost function. Loss 
function in deep learning network can be estimated 
depending on  its task, for instance, regression task 



127

Original paper	 Research in Agricultural Engineering, 70, 2024 (3): 123–133

https://doi.org/10.17221/65/2023-RAE

by  applying the mean squared error (MSE) or  the 
mean absolute error (MAE). A  focal loss is  used 
in  the object detection task, while binary cross-en-
tropy or category cross-entropy is used in classifica-
tion. For multiclass classification, the category cross-
entropy is employed within the following equation:

0
ˆlog( )k

j Jj
Loss y y

=
= −∑ 	 (7)

where: k – the number of data classes; j = 1, 2, … k. 

1

1
2

ˆlogn k
ij iji j

COST y y
=

 =  ∑ ∑ 	  (8)

where: k – classes; y – the actual value; ŷ – the prediction.

Optimisation function. The optimiser is  used 
to update the parameter in the network, and at the 
same time to minimise the loss function. There are 
some optimisers mostly used in deep learning mod-
els, such as the Adam optimiser or Stochastic gradi-
ent descent with momentum (SGDM). The Stochas-
tic gradient descent (SGD) can oscillate throughout 
the path, which affects achieving the best outcome; 
one technique for preventing this oscillation is to in-
corporate the momentum parameter to minimise it. 
The SGDM optimises the process with this equation:

1 1( ) ( )l l l l lE+θ = θ−α −∇ θ + γ θ −θ − 	 (9)

l is the number of iterations; α > 0 represents the 
Lr; θ denotes the vector of  the parameter; ∇E(θ) 
is the gradient of  the loss function as  determined 
by all of the training data sets. The typical gradient 
descent algorithms operate the full data set simulta-
neously. γ indicates the amount the previous gradi-
ent step contributed to the current iteration, which 
is  expressed as  momentum value. The momentum 
value is defined as a scalar from 0 to 1. In this study, 
we use SGDM with a momentum value of 0.9. After 
data were trained with parameters defined previous-
ly, the testing stage of  103 images was performed. 

The test images were cropped to  227  ×  227  ×  3 
in size; the prediction results were then document-
ed in a spreadsheet file. At the evaluation stage, the 
precision, sensitivity and F1-score were investigated, 
as displayed in the Table 2.

True positive indicates a  positive sample which 
was correctly predicted, and false positive a negative 
sample that was incorrectly forecasted. While false 
negative indicates a positive case that was forecasted 
incorrectly, true negative indicates a negative sample 
that was successfully predicted. 

Sample data set used in  this study are  displayed 
in the Figure 3.

Additionally, the Kruskal-Wallis H tests were per-
formed to  investigate whether they produce the 
same median weight. The non-parametric test ap-
plies ranks to the Ho if the parameter weight for sago 
palm detection in all networks are the same, while 
the Ha represents at least one network is differ from 
the other. The H test is done with the following for-
mula (Da Silva et al. 2022; Akshit Rajesh Tayade and 
Safari-Katesari 2023):

2

1

12 3 1
1

( )
( )

k i
Ti

T T i

R
H n

n n n=

 
= − + + 

∑ 	 (10)

where: k – the number of populations; ni – how many 
observations there are in sample i; nT = ∑(i=1)

k – the sum 
of all observations across all samples; Ri – the total rank 
scores for the sample I.

RESULTS AND DISCUSSION

The training processes were performed for five 
network structures; some training progresses are 
displayed in Figure 4. The accuracy and loss values 
are distinguished by  blue and orange, respectively. 
The training accuracy is  represented by  light blue 
coloured dots, while the training loss during the 
learning process is  indicated by  light orange dots. 
In  addition, black coloured dots denote validation 

Metric Formula Criteria

F1-score
2 ( )recall precision

recall precision
× ×

+ high scores support the model's validity 

Precision
true positive

true positive false positive+ determines the model's capability to forecast a positive label.

Sensitivity (recall)
true positive

true positive false negative+
defines the model's capability to accurately find instances 

of particular classes.

Table 2. Metric evaluation used in this study
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accuracy and loss, while dark blue and dark orange 
colours define the sleekness of  both accuracy and 
loss values, respectively. Training loss is calculated 
after each batch, while validation loss is  measured 
after each epoch.

The learning results from each trained Network 
are presented in Table 3. 

As seen from Table 3, Network-17 achieved less dif-
ferentiation between training and validation learn-
ing results compared to Network-10 or Network-15. 

!
!

!

! ! !

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)

Figure 3. Sample dataset provided in this study: (A, B and C) Non sago, (D, E) sago flowers, (F, G) sago leaves, (H) 
sago trunk, (I, J) test image: non-sago, and (K, L) test image: sago flowers

Figure 4. Sample training 
progress of trained Net-
work-15
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Training loss and validation loss in Network-19 and 
Network-22 differed by the range of 0.1 to 0.3, while 
the training and validation accuracy values differed 
between 6 to 8. Moreover, the number of iterations 
was equivalent to  the elapsed time; the more net-
works were iterated, the more time was consumed. 
In the last stage, 103 test images were used to inves-
tigate the performance of each trained model in pre-
dicting and classifying the input test images. Some 
of the confusion matrixes are presented in Figure 5. 
Sago model-1 consists of  68 CNN model layers, 
while sago model-2 contains 25 CNN layers. For 
example, the precision value in trained Network-15 
in detecting non-sago was about 80%, while in Net-
work-17 and Network-22, 82.6, 85%, respectively. 
Accordingly, the recall or  sensitivity of  these three 
networks was about 69.6, 82.6, and 73.9%.

Furthermore, the sensitivity, precision and F1-
score are measured based on values in  the confu-
sion matrix, as presented in Figure 6. The precision 
and the sensitivity of  each class were performed 
better in trained Network-17, trained Network-19, 
and trained Network-22. Although the sensitivity 
(recall) in  trained Network-10 was 91% for sago 

trunks, the precision was only about 37%. On  the 
one hand, in  trained Network-15, the precision 
of sago flowers was 90%, but the sensitivity was only 
about 56%, which means that around 56% of  the 
network was able to detect the instances of specific 
classes. Network-10 was trained with parameters 
similar to  those of  Network-17, i.e., Epoch  =  10, 
min batch size = 64. The biggest distinction be-
tween these two networks was the learning rate. 
The learning rate (Table 1) in Network-10 was set 
up  faster than in  trained Network-17; 0.001 and 
0.0001, respectively. If the loss value changes rather 
than drops, the model may not be  learning at  all. 
Nevertheless, if  it  declines in  the training set but 
not in the validation set (or if  it declines but there 
is a significant difference), the model may be over-
fitting. To  overcome this circumstance in  deep 
learning as  well as  transfer learning techniques, 
it is necessary to merely decrease the learning rate 
(Lin et al. 2023; Mukoya et al. 2023), as we  found 
in the course of our research

Passing a  complete dataset through the net-
work constitutes an  epoch; thus, the total number 
of training samples in a single mini-batch is referred 
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Figure 5. Sample confusion matrix results with parameters: (A) 10 epochs, learning rate was 0.0001, minimum batch 
size 10, and (B) 10 epochs, learning rate was 0.0001, minimum batch size 64

Network trained name Training 
accuracy

Training  
loss

Validation 
accuracy

Validation  
loss

Network 
iteration Elapsed time

Trained Network-10 96.87 0.1884 84.85 0.8798 40 4 min 44 sec
Trained Network-15 100.00 0.0038 91.67 0.3120 300 33 min 21 sec
Trained Network-17 89.06 0.2816 90.15 0.2766 40 3 min 44 sec
Trained Network-19 96.87 0.1601 88.66 0.4384 60 5 min 55 sec
Trained Network-22 80.00 0.3592 86.36 0.4761 240 31 min 40 sec

Table 3. Learning results of five trained network
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to as the batch size. Adapting a larger batch requires 
higher hardware processing; therefore, splitting 
it  into mini-batch sizes is  foremost. An  updating 
of  the model's weights during training is  referred 
to  as an iteration. The number of batches required 
to  finish one epoch is  equal to  the number of  it-
erations. In  this experiment, we  define four kinds 
of mini-batch size, i.e., 10, 64, combined with three 
groups of epochs, i.e., 8, 10, 15, and with 309 train-
ing images. For example, a trained Network-17 splits 
into 64 mini-batch sizes with ten epochs. Thus, 

309 images divided by 64 mini-batch size turn to ap-
proximately 4.8 or around four images in one epoch. 
Then, it will take 40 network iterations to complete 
ten epochs (4 images x 10 epochs). Thus, if we set 
up  a  high lr or  a  fast-learning process, the model 
is not able to read accurately. As  a result, the model 
fails to  learn, particularly if  the loss does not de-
crease (Kumar and Janet 2022). 

Figure 7 shows the sum of  ranks (Ri ) produced 
through the Kruskal-Wallis H test process. As  can 
be  seen, the Ri of  the five networks were domi-

Figure 7. Sum of ranks of (A) five networks, and (B) four classes in five networks
NS – non sago; SF – sago flowers; SL – sago leaves; ST – sago trunks
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nated by  trained Network-22, followed by  trained 
Network-17, trained Network-15, and trained Net-
work-19, while the last rank was trained Network-10. 

The H values were calculated based on the equation, 
and the results for the five networks are in Table 4. 

The calculation results in Table 4 were compared 
to  the same non-parametric test Kruskal-Wallis 
1-way ANOVA (k samples) in  SPSS IBM statistics 
software (version 26). The overall result is  shown 
in Table 5. 

The results in  Tables 4 and 5 indicated that the 
parameter adjustment affected the results in classi-
fication differently; at  least one parameter differed 
from the other. Trained Network-15 and trained 
Network-17 were set up with the same parameters, 
namely learning rate (0.0001) and epoch (10); only 
one parameter differed between those two networks, 
namely batch size, i.e., 10 and 64, respectively. Ta-
ble 6 shows the tests of effects on the subject from 

Parameter Value Description
No. NS 15 number of observations in non-sago class
No. SF 15 number of observations in sago flowers class
No. SL 15 number of observations in sago leaves class
No. ST 15 number of observations in sago trunks class
k 4 number of groups 
nt 60 total number of observations

12
1( )T Tn n +

0.003278689

3 1( )Tn + 183
2

1

k i
i

i

R
n=∑ 59.979

H-value 13.65 df =3
Chi-square (χ2) 7.814727903 χ2 inverse (0.95, df)
P-value 0.003415348 χ2 distribution, right tail (H, df)
H-value reject the null hypothesis H > χ2

Table 4. Kruskal-Wallis test results

Parameter Test statistic Significance level P-value H0

Non sago 9.804 0.05 0.044 reject 
Sago flowers 6.106 0.05 0.187 retain 
Sago leaves 7.218 0.05 0.125 retain 
Sago trunk 2.718 0.05 0.606 retain

Table 5. Kruskal-Wallis 1-way analysis of variance (k samples), N = 15

H0 – null hypothesis

df – degree of freedom

Source Type III 
sum of squares df Mean square F-value Significance Source

class * trained name *

predict *actual

sphericity assumed 0.488 9 0.054 3.534 < 0.001
greenhouse-Geisser 0.488 6.539 0.075 3.534 0.001

Huynh-Feldt 0.488 7.500 0.065 3.534 < 0.001
Lower-bound 0.488 3.000 0.163 3.534 0.016

Table 6. General linear model result of four factors
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class, trained network, prediction result and actual 
class using a general linear model (GLM). 

The class factor in Table 6 was defined in 4 groups, 
i.e., non-sago, sago flowers, sago leaves and sago 
trunks. It can be seen that the results from the two 
networks differed from one class to  others signifi-
cantly in  terms of  statistics analysed. These results 
are in  line with another earlier study that high-
lighted batch size as one of  the influencing factors 
in image classification (Usmani et al. 2023) together 
with learning rate, as was also revealed in this study. 
Therefore, an adjustment between learning rate and 
batch size could improve the level of precision. 

CONCLUSION

This study involved knowledge transfer by adjust-
ing different parameters, namely epoch, learning 
rate and batch size in sago palm detection. Five net-
works were used to classify and predict three visible 
morphology classes of sago palm, i.e., sago flowers, 
sago leaves, sago trunks and other non-vegetation 
or  non-sago. The results showed that different pa-
rameters achieved various results. This is apparent 
from the metric calculation followed by  the statis-
tical analysis. Two statistical approaches were de-
livered to accept or reject the hypothesis, i.e., first, 
the Kruskal-Wallis test to  analyse the differences 
between the five networks. As a result, the Kruskal-
Wallis test found the parameters in  each network 
are different with a P-value of 0.00341, while at least 
one class is  higher than others, i.e., non-sago with 
a P-value of 0.044 with respect to precision, recall, 
and F1-score. Second, the GLM test specifically ex-
amined two networks, namely trained Network-15 
and trained Network-17, since these two networks 
consisted of similar parameters, except for the batch 
size. The results revealed that the two networks' ef-
fects differed based on the prediction result, actual 
image, and classes. This research effort highlighted 
the importance of  adjusting the parameters, such 
as  learning rate and batch size, to  achieve the ex-
pected result. The study can experiment further 
with different networks, various learning rates, and 
the batch size. 
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