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Abstract: The tomato occupies a prominent place in the Philippines’ agricultural economy. However, tomato leaf dise-
ases are challenges in tomato crop production leading to economic losses. Among the tomato leaf diseases, early blight 
and Septoria leaf spot are prevalent in the Philippines due to the climate. Thus, the accurate identification of diseases 
affecting tomato leaves is essential. Currently, a visual inspection is  the primary method for diagnosing tomato leaf 
diseases which is time-consuming and inefficient. This study aims to develop a quantized Residual Network with con-
volutional 50 layer (ResNet-50) based model to classify tomato leaves as healthy or affected by Septoria leaf spot or early 
blight. Furthermore, to enhance the reliability of the models’ classification, gradient-weighted class activation mapping 
(Grad-CAM) was implemented. In contrast with the visual inspection, a programmed system does not get tired and can 
provide consistent performance results. As a result, the original 32-bit floating point model attained an accuracy rate 
of 91.22%. The quantized 16-bit floating point model demonstrated comparable performance with 90.10% accuracy with 
a 50% reduction in the model size and inference time of 0.3942 seconds. The minimal accuracy loss of the 16-bit model 
relative to the 32-bit model is due to the post-training quantization. The reduction to 16-bit precision is significant for 
the future deployment of edge devices where resources are limited.

Keywords: tomato leaf disease classification; Grad-CAM; quantization; ResNet50 

© The authors. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).

Tomato (Solanum lycopersicum) is  extensively 
cultivated in  the world, and it  was reported that 
187  million metric tonnes of  tomatoes were pro-
duced worldwide in  2020 (Branthôme 2022). 
The tomato occupies a prominent place in the Phil-
ippines’ agricultural economy. In  fact, the Philip-
pines is  among the Asia-Pacific region’s leading 
producers of  tomatoes, with a  production value 
of  6.15 billion pesos in  2021. It  is also one of  the 
most profitable crops in the Philippines and second 
most significant fruit vegetable in the country after 
the eggplant (Gorme et al. 2017).

The Philippines, due to favourable climate and soil 
conditions, has been a major producer of tomatoes. 
The country’s tropical climate, with an average tem-

perature of 21–24 °C, abundant rainfall, and fertile 
soil, is suitable for tomato cultivation. Tomatoes are 
typically cultivated year-round, but the main sowing 
season typically runs from the months of September 
to  January in hilly locations, and from the months 
of November to February in lowland locations (De-
partment of Agriculture 2017).

However, tomato plants are sensitive to  a  variety 
of diseases which limits tomato cultivation resulting 
in a significant economic loss. Among all tomato dis-
eases, fungus-based diseases, such as early blight and 
Septoria leaf spot, are much more prevalent in  the 
Philippines due to extended periods of leaf moisture 
and moderate temperatures, both of which are typi-
cal of humid climates (Maeda-Gutiérrez et al. 2020).
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Visual inspections, or the naked-eye method, are 
typically the initial step in detecting tomato plant 
diseases such as  Septoria and early blight (Arnal 
Barbedo 2013). However, visual inspections are not 
always effective at detecting these diseases in their 
early stages since their symptoms are frequently 
confused with other diseases. It  also emphasises 
that early blight and Septoria leaf spot can be dif-
ficult to  distinguish visually, particularly in  their 
early stages, and the incorrect identification can 
result in  inappropriate management strategies. 
Hence, the automation of tomato leaf disease clas-
sification is a must.

Machine learning approaches have demonstrated 
the potential for automated tomato disease classifi-
cation. Due to the rise of computing resources, deep 
learning algorithms are used since they do not re-
quire multiple pre-processing steps before the clas-
sification task. For tomato leaf disease classification, 
convolutional neural networks (CNNs) were com-
monly used since it can learn discriminative char-
acteristics from pictures and generate predictions 
based on  those (O’Shea and Nash 2015). Various 
studies (De Luna et al. 2018; Rangarajan et al. 2018; 
Zhang et  al.  2018; Elhassouny and Smarandache 
2019; Agarwal et al. 2020; Vinay et al. 2020; Attalah 
2023; Baser et al. 2023) used CNN for tomato leaf 
disease classification, and they produced high ac-
curacies. However, they did not consider the com-
putational requirements of their algorithms, as well 
as  their interpretability. For practical applications 
of tomato disease classifications, the computational 
requirement is a challenge when the algorithm will 
be  deployed in  resource-constrained devices (Al-
zubaidi et  al.  2021). CNN models require signifi-
cant memory bandwidth and computational power 
due to their numerous parameters, often surpassing 

edge device capabilities (Liu et al. 2019). Moreover, 
the algorithm’s interpretability is a must especially 
when interventions will be undertaken. Interpreta-
ble algorithms enable knowledge-specific research-
ers to trust the detection process (Chopra and Wig 
2021; Mahmud et al. 2024).

This study aims to  develop a  lightweight CNN 
model and assess the developed model through 
gradient-weighted class activation mapping (Grad-
CAM). Specifically, residual networks with 50 layers 
(ResNet-50) will be optimised through grid search 
hyperparameter tuning. Post training quantization 
will be performed to the optimised ResNet-50, and 
assessment through Grad-CAM will be undertaken 
for the interpretability of the model. The research 
hypothesises that an  accurate tomato leaf disease 
classification can be made using a lightweight and 
interpretable model.

MATERIAL AND METHODS 

The main objective of  the study is  to develop 
a  lightweight and interpretable ResNet-50 for to-
mato leaf disease classification. Figure 1 shows 
the overview of  the methodology. It  is divided 
into three parts namely, data pre-processing, deep 
learning training and evaluation, and assessment.

The training dataset is  obtained from the Plant 
Village Dataset from Kaggle, an open-source data 
science and machine learning platform. The Plant 
Village Dataset is  a  reliable source utilised in  the 
machine learning field and verified by  agriculture 
experts worldwide (Plant Village 2024). In  this 
study, only healthy, Septoria leaf spot, and early 
blight leaves were considered, and each class con-
sists of 1 000 images. Figure 2 illustrates the sample 
images of the said class in the training dataset.

Figure 1. Methodology overview
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Meanwhile, the testing dataset was collected 
manually in  Tiaong, Quezon, Philippines during 
the month of September 2023. It contains 85 early 
blight, 70 healthy, and 33 Septoria leaf spot leaves, 
which were 5 to  6 months old. Additionally, a  li-
censed agriculturalist validated the testing set to en-
sure its credibility and verify the accuracy of the la-
bels comprising the testing dataset. Figure 3 shows 
the sample image of each class, locally collected.

Data pre-processing. For interpretability pur-
poses through Grad-CAM, all the images in  each 
dataset were subjected to background removal and 
patch extraction to highlight the significant features 
of each class (Yebasse et al. 2021). Background re-
moval is  the process of  replacing the background 
of  an image to  a  white background. This allows 
the model to  better capture the distinguishing 
characteristics of  each class. Meanwhile, the pro-
cess of patch extraction zoomed out all the imag-
es with a dimension of 90 × 90 pixels to highlight 
their unique regions. All the images were resized 
to a 256 × 256 dimension to tailor-fit with accept-
able ResNet-50 input size. Their pixel values were 
normalised between 0 to 1 for faster solution con-
vergence. Lastly, data augmentation was employed 
to  improve the model’s ability to  generalise and 
avoid overfitting. The study employed rotation, flip-

ping, and zooming, producing 6 000 and 188 train-
ing and testing images overall, respectively.

Deep learning training and evaluation. A pre-
trained ResNet-50 architecture was used as a classi-
fication algorithm for tomato leaf diseases. Figure 4 
shows the architecture of  ResNet-50. ResNet-50 
is  a  50-layer deep convolutional neural network 
that uses residual/skip connections to mitigate the 
vanishing gradient problem for training deeper 
networks (He et al. 2015). For the tuning of the pre-
trained ResNet-50 model, a  grid search was per-
formed to  identify the best hyperparameter from 
the preselected choices. The batch size, learning 
rate, and number of epochs were considered as the 
hyperparameter. Table 1 shows the hyperparam-
eter choices of  ResNet-50. Stratified 5-fold cross-
validation was implemented in the training dataset, 
and the average accuracy is the basis for selecting 
the best hyperparameter combination. 

Figure 2. Left to right: early blight, Septoria leaf spot, healthy leaves of the training set

Figure 3. Left to right: early blight, Septoria leaf spot, healthy leaves of the testing set

Table 1. Hyperparameter choices for 50-layer residual 
networks

Hyperparameter values
Batch size 32, 64, 128, 256
Epoch 25, 50, 75, 100, 125, 150
Learning rate 0.01, 0.001, 0.0001, 0.00001
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Table 2. Labels used in the qualitative evaluation of the (Grad-CAM) heatmaps (Molnar 2022)

Label classification Label name Label acronym Letter label

Main label

Class predicted correctly with high confidence CPCHC –
Class predicted correctly with low confidence CPCLC –

Class predicted incorrectly with high confidence CPIHC –
Class predicted incorrectly with low confidence CPILC –

Sub label All only spots are perfectly highlighted AOSPH A
Sub label Some only spots are perfectly highlighted SOSPH B
Sub label All only spots are highlighted AOSH C
Sub label Some only spots are highlighted SOSH D

Sub label Some spots perfectly are perfectly highlighted, but some spots are 
partially highlighted SSPHSPH E

Sub label All spots are perfectly highlighted, but some insignificant areas are 
highlighted ASPHIH F

Sub label All spots are majority highlighted, but some insignificant areas are 
highlighted SSPHIH G

Sub label All spots are highlighted, but some insignificant areas are high-
lighted ASHIH H

Sub label Some spots are highlighted, but some insignificant areas are high-
lighted SSHIH I

Sub label Some spots are perfectly highlighted, but some spots are partially 
highlighted, and some insignificant areas are highlighted SSPHSPHIH J

Sub label No spots are highlighted NH K

For label acronym description see Table 3

Figure 4. 50-layer residual network architecture (Mandal et al. 2021)
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Post training quantization (PTQ) was applied 
to the optimised ResNet-50 to make the optimised 
model lightweight enough for edge device deploy-
ments. PTQ is the process of reducing the precision 
of the weight and activation values inside the neural 
network model to lower-bit precision with consider-
ation for performance degradation. Here, only 16-bit 
floating and 8-bit integer quantization were consid-
ered. The quantized ResNet-50 was evaluated using 
the testing dataset for generalisation purposes.

Assessment. To  assess the quantized models 
in terms of its classification performance, the accu-
racy, macro F1-score, weighted F1-score, area un-
der the curve (AUC), model size, and inference time 
were considered. The model size and inference time 
were considered for the assessment of the edge de-
vice compatibility and real-time processing speed. 
Ideally, a  low model size and faster inference time 

were preferred. Meanwhile, other metrics were con-
sidered for the general classification performance. 
This is to ensure that the classification performance 
was not heavily degraded upon quantization. For 
interpretability, a visualisation tool named gradient-
weighted class activation mapping (Grad-CAM) was 
used to  create heatmaps from the ResNet-50 acti-
vation layer. Grad-CAM reveals the inner workings 
of the black-box of ResNet-50 and aids in debugging 
the model when overfitting. The qualitative assess-
ment of  Grad-CAM was analysed using the main 
and sub label, with each main level containing all the 
sub labels (Molnar 2022). Table 2 shows the various 
labels for the Grad-CAM heatmap analysis.

The labels are descriptive terms used to describe 
the visible symptoms in the images, excluding small 
spots due to the possibility of dirt. Insignificant leaf 
areas are those that do not correspond to a disease 

Table 3. Description of each label found in Table 2 (Molnar 2022)

Label acronym Description

CPCHC A label that means that the model has correctly predicted the class of the image with a relatively 
high confidence.

CPCLC A label that means that the model has correctly predicted the class of the image, but with a relatively 
low confidence.

CPIHC A label that means that the model has incorrectly predicted the class of the image along with 
a relatively high confidence.

CPILC A label that means that the model has incorrectly predicted the class of the image, but with 
a relatively low confidence.

AOSPH Symptoms are the only ones highlighted, all the visible symptoms are highlighted, and a majority 
of the symptoms are highlighted.

SOSPH Symptoms are the only ones highlighted and a majority of the symptoms are highlighted,  
but not all visible symptoms are highlighted.

AOSH Symptoms are the only ones highlighted and all the visible symptoms are highlighted, 
but only some parts of a symptom are highlighted.

SOSH Symptoms are the only ones highlighted, but only some parts of a symptom are highlighted 
and not all visible symptoms are highlighted.

SSPHSPH Some visual symptoms have its majority highlighted and some symptoms only have some 
parts highlighted.

ASPHIH All visible symptoms have their majority highlighted, but insignificant parts of the image 
are highlighted as well.

SSPHIH Not all visible symptoms are highlighted, but the majority of a symptom is highlighted,  
and insignificant parts of the image are highlighted as well.

ASHIH All visible symptoms are highlighted, but only some parts of a symptom are highlighted.  
Also, insignificant parts of the image are highlighted as well.

SSHIH Some visible symptoms are highlighted and only some parts of a symptom are highlighted.  
Also, insignificant parts of the image are highlighted as well.

SSPHSPHIH Some visual symptoms have their majority highlighted and some symptoms only have some parts 
highlighted. Also, insignificant parts of the image are highlighted as well.

NH No visual symptoms were highlighted despite their presence on the leaf being analysed.
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symptom or are not utilised by specialists. The high 
level of confidence is more than or equal to 85% and 
the low level of confidence is less than 85%. Table 3 
contains the description of each label.

RESULTS AND DISCUSSION

This section is subdivided into two parts, namely 
the performance of  the quantized ResNet-50 and 
the qualitative assessment of  ResNet-50. Each 
of them is discussed accordingly.

Performance of  the quantized ResNet-50. The 
optimal hyperparameters of the pretrained ResNet-50 
obtained using the training dataset is  shown in  Ta-
ble  4. Here, grid search cross-validation was used, 
and the average validation accuracy was compared 
to various combinations of hyperparameters. 

The performance of the original (32-bit) and quan-
tized pretrained ResNet-50 were observed in  the 
testing dataset through the accuracy, macro F1-
score, weighted F1-score, and AUC. Meanwhile, the 
model size and inference time were also considered 
for the hardware performance of  the models with 
the model size for the edge device deployment and 
inference time for real-time processing. 16-bit float 
and 8-bit integer were used for the quantization.

Figure 5 shows the comparison of the classifica-
tion performance metrics of the 32-bit, 16-bit, and 
8-bit pretrained ResNet-50. It  was observed that 
a minimal degradation occurred on all the classifi-
cation performance when converted from a 32-bit 
to  16-bit quantized model. However, significant 
degradation happened when converted to an 8-bit 
quantized model. For the 16-bit quantized model, 
there is a 90% chance that the model correctly pre-
dicts the rice leaf disease classification. A  macro-
F1 score of 88% indicated a balanced performance 
across all the considered rice leaf classes, especially 
the least occurring class Septoria leaf spot. Mean-
while, a  weighted F1-score of  90% demonstrated 
the strong overall model performance, particular-
ly for the more frequent class named early blight. 
Lastly, an AUC value of 91% reflected the model’s 
capability to  distinguish different diseases across 
various threshold settings.

For the hardware performance of the 32-bit, 16-
bit, and 8-bit 50-Layer Residual Networks, Table 5 
summarises the model size and inference time 
of each model. It was observed that a 32-bit model 
size was significantly reduced to two and four times 
when quantized to  16-bit and 8-bit, respective-
ly. This was explainable since the reduction from 
a 32-bit floating point to a 16-bit float and an 8-bit 

Table 5. Hardware performance of 32-bit, 16-bit, and 8-bit 
50-Layer Residual Networks

ResNet-50 Model size (MB) Inference time (s)
32-bit 93.5962 0.6085
16-bit 47.5045 0.3942
8-bit 23.3876 0.3281

Table 4. Optimal hyperparameters of  the pretrained 
50-layer residual networks

Hyperparameter Value
Batch size 128
Epochs 50
Learning rate 0.001
Dropout rate 50

Figure 5. Classification 
performance of the 32-bit, 
16-bit, and 8-bit 50-layer 
residual networks
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integer roughly compressed the bit counts to  two 
and four times, respectively. Lastly, an almost 50% 
decrease in the inference time was observed when 
16-bit and 8-bit quantized models are considered 
compared to the 32-bit model. While the reduction 
in the inference time is at a minimum in the context 
of processing one image, it is essential for real-time 
processing especially when dealing with a  large 
number of image inputs to the model. 

Qualitative assessment of  ResNet-50. Table 6 
provides insights into the number of  correct pre-
dictions falling under the main label class predict-
ed correctly with high confidence (CPCHC). Note 
that a high confidence signifies an accuracy greater 
or equal to 85%. Within the CPCHC category, most 
images are classified under the sub-label J. This 
sublabel signifies that the model highlighted some 
visual symptoms perfectly and partially. It is worth 
noting that insignificant regions of  the image are 
highlighted, potentially indicating areas of  noise 
or non-disease-related features.

Figure 6 present sample Grad-CAM images of a to-
mato leaf affected by early blight under CPCHC. The 
heatmap revealed that the model successfully cap-
tures most of  the diseased regions on the leaf. The 
intensity of  the created heatmap defines the dam-
age intensity of  the tomato leaves. It was observed 
that the leaf was significantly damaged from the left 
side based on the heat intensity. However, it is worth 

noting that the highlighted regions appear coarse. 
This may be attributed to factors, such as the qual-
ity of the training dataset and discrepancies between 
the testing and training datasets. Despite the coarse 
highlighting, the model demonstrated high confi-
dence in predicting the early blight class correctly. 
This suggests that the model has learned valuable 
features that are distinctive to tomato leaves exhib-
iting symptoms of early blight.

Figure 7 displays sample Grad-CAM images 
of a tomato leaf with Septoria leaf spot under the CP-
CHC category. The Grad-CAM image revealed that 
the model effectively highlights most of the diseased 
regions corresponding to Septoria leaf spot. It was 
observed that the leaf was significantly damaged 
everywhere based on  the heat intensity. However, 
compared to  the early blight class, the highlighted 
regions appeared coarser. This discrepancy may 
be attributed to the lower quality of the Septoria leaf 
spot (SLS) training set compared to the early blight 
training set. Additionally, discrepancies between 
the SLS training and testing sets such as  the pres-
ence of different visual symptoms in the testing set 
not represented in the training set, may contribute 
to the coarser highlighting. Furthermore, the train-
ing set sourced internationally may not fully capture 
the visual symptoms prevalent in tomato leaves with 
SLS in the local Philippine environment. This leads 
to  differences in  the symptom expression. Despite 

Table 6. Labels of the Grad-CAM images under the class predicted correctly with high confidence

Class
Grad-CAM labels

A B C D E F G H I J K
Early blight 0 0 0 0 1 3 0 10 16 123 1
Septoria 0 0 0 0 0 1 0 1 4 37 2

Healthy 0 0 1 4 3 9 0 19 25 82 0

Total 0 0 1 4 4 13 0 30 45 242 3

Figure 6. Sample Grad-CAM image of 
early blight under the class predicted 
correctly with high confidence
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the coarser highlighting in the SLS class, the model 
still correctly predicted the SLS class. This featured 
its ability to generalise and identify distinctive fea-
tures of tomato leaves with Septoria leaf spot.

Figure 8 illustrates sample Grad-CAM images 
of  healthy tomato leaves under CPCHC. Notably, 
the Grad-CAM highlighted most of  the regions 
of  the tomato leaf which is  a  characteristically 
unique to  the healthy class. However, some of  the 
Grad-CAM images of  a  healthy tomato leaf high-
lighted the white background. Despite this, the 
model consistently classified the correct class indi-
cating the robustness and a  thorough understand-
ing of  the features of  a  healthy tomato leaf. This 
robust performance in  identifying healthy leaves 
is evident, given the challenges posed by the back-
ground noise. Furthermore, it was observed that the 
healthy class within the training set exhibits higher 
quality compared to  the early blight and Septoria 
leaf spot classes. This has offered valuable insights 
into model training. The clearer and less blurry im-

ages in the healthy class suggest that the model has 
had exposure to  high quality data, enabling it  to 
learn and generalise effectively. These healthy leaf 
features in the training set translate into finer Grad-
CAM heatmaps, further validating the model’s pro-
ficiency in classifying healthy tomato leaves.

CONCLUSION

This study developed quantized ResNet-50 archi-
tecture for classifying healthy tomato leaves, as well 
as those affected by early blight or Septoria leaf spot. 
The ResNet-50 architecture was fine-tuned using 
a dataset of  labelled tomato leaf images. The train-
ing process involved data augmentation and optimi-
sation techniques to  enhance the model’s generali-
sation capabilities. This ensured it  could accurately 
distinguish between the various tomato leaf diseases.

The evaluation of  Grad-CAM images served 
as  a  crucial tool for building confidence in  the 
model’s predictions. Grad- CAM was used to gen-
erate visual explanations of  the model’s decision-
making process by highlighting regions in the im-
ages that contributed to  the predictions. It  was 
observed that despite highlighting small and in-
significant regions, such as background noise and 
dirt, the model consistently predicted the correct 
class, underscoring its robustness. This qualitative 
analysis involved visually inspecting and interpret-
ing numerous Grad-CAM heatmaps to ensure the 
model’s reliability and interpretability.

In conclusion, the best quantized model in terms 
of performance metrics is the 16-bit model. It dem-
onstrated a 50% reduction in the model size and had 
a  faster inference time of  0.3942 seconds relative 
to the original 32-bit model. It also had a minimal 
performance loss, which makes it a suitable choice 
for the future deployment in  environments with 

Figure 7. Sample Grad-CAM image of Septoria 
leaf spot under the class predicted correctly 
with high confidence

Figure 8. Sample Grad-CAM image of healthy leaves 
under the class predicted correctly with high confidence

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0



9

Research in Agricultural Engineering, 71, 2025 (1): 1–9	 Original Paper

https://doi.org/10.17221/67/2024-RAE

limited computational resources. This model pro-
vides an optimal balance between accuracy, model 
size, and inference speed which make it  ideal for 
practical applications in the field.
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