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Abstract: Reference crop evapotranspiration (ETo) is  a  vital hydrological component influenced by  various climate 
variables that impact the water and energy balances. It plays a crucial role in determining crop water requirements and 
irrigation scheduling. Despite the availability of numerous approaches for estimation, accurate and reliable ETo estima-
tion is essential for effective irrigation water management. Therefore, this study aimed to  identify the most suitable 
machine learning model for assessing ETo using observed daily values of limited input parameters in tropical savannah 
climate regions. Three machine learning models – a  long short-term memory (LSTM) neural network, an  artificial 
neural network (ANN), and support vector regression (SVM) – were developed with four different input combinations, 
and their performances were compared with those of locally calibrated empirical equations. The models were evaluated 
using statistical indicators such as the root mean square error (RMSE), coefficient of determination (R2), and the Nash-
Sutcliffe efficiency (NSE). The results showed that the LSTM model, using the combination of temperature and wind 
speed, provided more reliable predictions with R2 values greater than 0.75 and RMSEs less than 0.63 mm·day–1 across 
all the considered weather stations. This study concludes that, especially under limited data conditions, the developed 
deep learning model improves the ETo estimation more accurately than empirical models for tropical climatic regions.
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Given the rising demand for water resources due 
to climate change, population growth, and agricul-
tural activities, it  is essential to  optimise limited 
water resources, especially in  agricultural produc-
tion systems. The precise monitoring of all elements 
in the hydrological cycle and utilising this informa-
tion for decision support in  water resource man-
agement can ensure the sustainability of  water re-
sources. It is crucial to evaluate various methods for 
increasing the water usage efficiency to  conserve 
scarce water resources. Understanding crop evapo-

transpiration  (ET) is  necessary for water manage-
ment studies, including irrigation scheduling, crop 
water requirement estimation, and hydrological 
modelling, as  it is  a  significant component of  the 
hydrologic cycle. Direct measurements of the actu-
al ET include water vapour transfer methods (eddy 
covariance) or water budget measurements (lysime-
ters), but their availability is limited due to their high 
complexity and cost. Alternatively, the crop ET can 
be estimated using the reference evapotranspiration 
(ETo) and crop coefficient (Kc) (Fan et al. 2018).
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The Penman-Monteith (FAO-56 PM) model, rec-
ommended by  the Food and Agriculture Organi-
zation of  the United Nations (FAO), incorporates 
thermodynamic and aerodynamic effects and is the 
reference model for the accurate estimation of ETo 
worldwide (Allen et  al. 1998). The main drawback 
of  this model is  that it  requires several climatic 
variables (maximum and minimum temperature, 
relative humidity, solar radiation, and wind speed), 
which are not readily available at most weather sta-
tions in  developing countries (Karuppanan et  al. 
2022). Therefore, there is a need for empirical mod-
els that demand fewer climatic variables to predict 
the ETo adequately. Various empirical models have 
been adopted to estimate the ETo using limited data, 
such as  temperature-based models (Hargreaves 
and Samani 1985; Ravazzani et al. 2012), radiation-
based models (Abtew 1996; Tabari and Talaee 2011), 
humidity-based models (Schendel 1967), and wind 
speed-based models (Brockamp and Wenner 1963; 
Mahringer 1970). However, the estimation accuracy 
of empirical models varies according to the climatic 
conditions, and the results may provide substandard 
estimates, given the non-linear, dynamic, and com-
plex nature of the process.

Advances in data science and artificial intelligence 
have led to  the consideration of  deep learning and 
classical machine learning algorithms for estimating 
the ETo. Many studies have addressed the application 
of machine learning algorithms (Fan et al. 2018; Fer-
reira et al. 2019; Saggi and Jain 2019; Wu et al. 2019; 
Ferreira and da Cunha 2020; Raza et al. 2020; Salam 
and Islam 2020; Bellido-Jiménez et  al. 2021; Goyal 
et al. 2023), such as support vector regression (SVM), 
artificial neural networks (ANNs), and random for-
est algorithms, for the estimation of  the ETo. For 
instance, Ferreira et  al. (2019) compared SVM and 
ANN models with empirical equations under limited 
data conditions for Brazil and found that ANNs per-
formed better than SVMs. Additionally, Wen et al. 
(2015) evaluated the applicability of the SVM model 
to  estimate the daily reference evapotranspiration 
(ETo) using limited climatic data in  the extremely 
arid region of  the Ejina Basin, China. Despite the 
shortcomings of ANNs, such as slow training, sus-
ceptibility to becoming trapped in a local minimum, 
and the need for substantial training data, research-
ers have found ANNs to provide better estimations 
than empirical models.

Deep machine learning models have been effec-
tively utilised in  various water-related studies and 

have shown remarkable results. One commonly 
used deep learning model, the long short-term 
memory (LSTM) model, has been applied for pre-
dicting streamflow (Ni et al. 2019), soil moisture (Li 
et  al. 2021), and other aspects of  the hydrological 
cycle (Hu et al. 2018). The advantage of  the LSTM 
model is  its ability to  identify long-term relation-
ships between the input and output in the network. 
This is achieved by utilising memory cells to store, 
write, and read data, replacing the traditional hidden 
layer. The model can be  trained for sequence gen-
eration by processing actual data sequences one step 
at a time and predicting the next time step.

In a study by Zhu et al. (2020), three deep learning 
algorithms (LSTM, deep neural network (DNN), 
and temporal convolutional networks (TCN)) and 
two classical machine learning algorithms, SVM 
and random forest(RF), were compared. The results 
showed that the deep learning algorithms provided 
more accurate estimates of  the ETo than did the 
empirical equations. Zhang et al. (2018) developed 
an  LSTM model to  predict water table depth dy-
namics in subareas of the Hetao Irrigation District, 
China, showing superior performance compared 
to  other models. Sattari et  al. (2021) also utilised 
LSTM models to estimate the monthly ETo in  the 
Corum region of Turkey with reasonable accuracy. 
Furthermore, Sowmya et al. (2020) compared four 
variants of DNNs in predicting the ETo in Califor-
nia, USA, and observed convincing performance, 
with R2 values ranging between 0.94 and 0.96.

To calculate the ETo, a comprehensive set of me-
teorological data, including air temperature, wind 
speed, sun radiation, and relative humidity, is need-
ed. In  some cases, there may be  limited ground 
weather stations collecting continuous and precise 
data, especially in  rural or  remote areas. The use 
of  reanalysis data as an alternative data source has 
its own practical restrictions and limitations, such 
as observational restrictions and reanalysis reliabil-
ity based on the location, time frame, and variables 
under consideration. The LSTM model is  a  prom-
ising tool for handling time series data in  irriga-
tion management and agriculture, particularly 
in ETo prediction.

This study aimed to evaluate the precision of the 
LSTM model for the daily ETo estimation using 
different combinations of  daily climatic data, such 
as  the maximum air temperature, minimum air 
temperature, wind speed, relative humidity, and 
sunshine hours, in the tropical savannah climatic re-
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gions of South India. The performance of the LSTM 
model is compared with that of other methods, in-
cluding ANN, SVM, and empirical equations such 
as Hargreaves Samani, Schendel, Tabari, and Brock-
amp and Wenner. The novelty of this work is the ac-
curate estimation of the ETo by developing machine 
learning models using minimum input parameters 
in addition to the empirical models for tropical sa-
vannah climatic regions.

MATERIAL AND METHODS

Study area and dataset
In this study, we  examined five weather stations 

located at  different elevations (Bangalore, Coim-
batore, Annamalai Nagar, Kovilpatti, and Tirupati) 
under the “tropical savannah” (Aw) climate classifi-
cation. The location map can be found in Figure 1. 
We sourced daily climatic data from the Indian Me-
teorological Department (IMD) Pune, including the 
maximum and minimum temperatures, maximum 
and minimum relative humidity, wind speed (mea-
sured at 2 m in height), and sunlight hours spanning 
from 1978 to 2014. We meticulously eliminated the 
missing and extreme values to minimise any poten-
tial errors during measurement. Noisy data encom-
passed instances such as the minimum temperature 
exceeding maximum temperature, wind speed sur-
passing 15 m·s–1, relative humidity surpassing 100% 
or negative values, as well as negative or implausible 
sunshine values that exceeded the photoperiod. Ta-
ble 1 outlines the mean values of the collected me-
teorological variables and the geographical informa-
tion of the weather stations.

Empirical models
In this study, observed lysimeter data were used 

for training and testing the machine learning mod-
els, as  well as  for comparison. The performance 

of  the developed models was evaluated against ex-
isting empirical models to  accurately estimate the 
ETo under data-scarce conditions. Vishwakarma 
et  al. (2022) compared 30 empirical methods for 
humid and subtropical climatic regions and found 
that radiation-based models exhibit greater accu-
racy in predicting the ETo. Niranjan and Nandagiri 
determined that the calibrated Hargreaves-Samani 
model provided a  precise estimation for the study 

Table 1. Mean values of climatic variables and geographical parameters of weather stations

Station Latitude  
(N)

Longitude 
(E)

Altitude  
(m a.s.l.)

Tmax Tmin RHmean  
(%)

U2 
(m·s–1)

SSH 
(h)

ETo 
(mm·day–1)(°C)

Bangalore 13°0' 77°37' 920 29.23 18.35 66.82 2.17 6.70 4.41
Coimbatore 11°0' 77°0' 403 31.85 21.48 66.54 2.30 6.56 4.79
Annamalai Nagar 11°24' 79°44' 4 31.82 22.79 75.28 1.84 7.85 4.57
Kovilpatti 9°12' 77°53' 80 35.52 22.08 64.14 1.95 7.12 5.32
Tirupati 13°27' 79°5' 395 33.44 22.65 60.48 2.38 6.41 5.29

Tmax – maximum temperature; Tmin – minimum temperature; RHmean – mean relative humidity; U2 – wind speed (mea-
sured at 2 m height); SSH – sunshine hours; ETo – reference evapotranspiration

Figure 1. The geographical locations of  the selected 
weather stations
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area. The Hargreaves-Samani, Schendel, Tabari, and 
Brackamp and Wenner models were chosen for this 
study based on their input parameters.

Hargreaves-Samani equation. The Hargreaves-
Samani model is one of the simplest empirical mod-
els for computing reference evapotranspiration. It is 
extensively used worldwide due to  its superior ac-
curacy and minimal need for climatic data. It is ex-
pressed as described in Equations (1–2):

 	  (1)

where: ETo – reference crop evapotranspiration; Ra – 
extraterrestrial radiation (MJ·m–2·day–1); Tmean – mean 
temperature (°C); Tmax – maximum temperature (°C); 
Tmin – minimum temperature (°C).

	  
(2)

where: Gsc – solar constant (0.0820 MJ·m–2·min–1); 
dr – inverse relative distance (Earth-Sun); ωs – sunset 
hour angle (rad); φ – latitude (rad); δ – solar decima-
tion (rad).

Schendel equation. This study uses the Schendel 
(1967) model, which is a commonly used humidity-
based model that requires the mean temperature 
and relative humidity as  inputs. The Schendel (S) 
model is expressed as shown in Equation (3):

 	  (3)

where: RHmean – relative humidity (%).

Tabari equation. The Tabari and Talee model, 
which is a radiation-based model, requires only tem-
perature data and solar radiation data as the inputs 
considered in this study and is expressed according 
to Equation (4):

 	  (4)

where: Rs – solar radiation (MJ·m–2·day–1), which was 
calculated based on  the Angstrom formula given 
in Equation (5):

 	  (5)

where: as (intercept) and bs (slope parameter) – regres-
sion coefficients with values of 0.25 and 0.5, respectively; 

( )( )0.5
mean max min0.408 0.0023 17.8 –o aET R T T T= × +  

( ) ( ) ( ) ( ) ( ) ( )
24 60

ω sin φ sin cos φ cos δ sin ω
πa sc r s sR G d δ= +    
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16o
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s s s a
nR a b R
N

 = + 
 

 

n –actual duration of sunshine (h); N – possible maxi-
mum sunshine hours.

Brockamp-Wenner model. The Brockamp and 
Wenner model uses wind speed-based models and 
demands only the wind speed and temperature data 
as  input parameters, and it  is described according 
to Equation (6):

 	  (6)

where: u – wind speed at a height of 2 m (m·s–1); es – 
saturated vapour pressure (kPa); ea – actual vapour pres-
sure (kPa).

Additionally, all the considered empirical models 
were regionally calibrated by  minimising the sum 
of  square errors by  employing the generalised re-
duced gradient (GRG) non-linear method (Djaman 
et al. 2019), see Equation (7):

 	
(7)

where: SSE – sum of square errors; Yobs,i – ETo calcu-
lated using the FAO Penman-Monteith (PM) model; 
Yest,i – estimated ETo using the selected equations.

The implemented methodology flow chart 
is shown in Figure 2.

Artificial neural network
Artificial neural networks (ANNs) are inspired 

by the complex nervous system of the human brain. 
ANNs are designed to  learn from input datasets 
to  establish non-linear relationships between the 
inputs and the desired outputs. The fundamental 
structure of an ANN consists of input, hidden, and 
output layers interconnected with nodes and activa-
tion functions (Dawson and Wilby 1998). The neu-
rons within the network perform numerical compu-
tations to calculate the weights and biases. Crucial 
hyperparameters, such as  the number of  epochs, 
number of hidden layers, number of nodes, and type 
of  training algorithm, significantly impact the per-
formance of a neural network.

The network operates in  two phases: during the 
feed-forward phase, input signals propagate in  the 
forward direction, activating functions to  produce 
output values. In  backward propagation, errors are 
used to adjust the layer weights. The error is essen-

( )0.4565.43 –o s aET u e e=  

( )2
, ,

1
SSE –

N
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i

Y Y
=
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tially the difference between the observed values and 
the model output. The mathematical formulation 
of the ANN is presented in the following Equation (8):

 	  (8)

where: yk – output at node k; g1 – activation function for 
the hidden layers; g2 – activation function for the output 
layers; M – number of  neurons in  the hidden layers; 
Wkj – weight between the hidden node and the output 
node; N – number of neurons in the input layers; Wji – 
weight between the input node and the hidden node; xi – 
value at node i; Wjo – bias of the jth neuron in the hidden 
layer; Wko – kth neuron in the output layer.

Support vector machine (SVM)
Vapnik proposed a novel machine learning approach 

for decision support systems to  address classification 
and regression problems. The main idea underlying 
SVM is to perform linear regression in this space after 
non-linearly mapping the data x into a  high-dimen-
sional feature space (Boser et al. 1992). In general, SVM 
is applied to estimate a regression function based on the 
given set of data points, as described by Equation (9):

 	  (9)

where: xi – input of  the ETo derived from the algo-
rithm; yi – desired output values of the ETo; n – number 
of training samples.

2 1
1 1
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The inputs are initially non-linearly mapped into 
a high-dimensional feature space where they are lin-
early connected with the outputs to  perform non-
linear regression procedures. To formalise the SVM, 
the following linear computation function was used, 
as shown in Equation (10):

 	  (10)

where: ω – weight vector; φ (x) – mapping function that 
transforms the input vectors into a high-dimensional 
space; b – constant bias value.

By minimising the regularised risk function, the 
values of coefficients ω and b can be calculated ac-
cording to Equations (11–12):

 	  (11)

 	  
(12)

where: C – positive constant that denotes the penalty 
parameter; ε – tube size; Lε [f (xi), yi] – ε-intensive loss 
function, which calculates the empirical error; 1/2||ω||2 – 
regularisation term.

Using the Lagrangian and optimum conditions, 
the following Equation (13) yields a  non-linear re-
gression function:
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Data Collection and Preprocessing 

Daily Climatic data 
(Tmax, Tmin, RH, U2, SSH) 
from 1978 to 2014 from 

five stations 

Training Data (80%) 

Testing Data (20%) 

 

INPUT COMBINATIONS 

1. Temperature Based (Tmax, Tmin) 
2. Humidity Based (Tmax, Tmin, RH) 
3. Radiation Based (Tmax, Tmin, Rs) 

4. Wind Speed Based (Tmax, Tmin, U2) 

Development of ANN, SVM, and LSTM 
Models 

Performance Evaluation of Models Using 
Statistical Indicators  

Figure 2. Flow chart of  the 
methodology implemented 
in this study
Tmax – maximum temperature; 
Tmin – minimum temperature; 
RH – relative humidity; Rs – solar 
radiation; U2 – wind speed (mea-
sured at 2 m height); SSH – sun-
shine hours
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 	  (13)

where: ai, ai* – Lagrange multipliers; k (xi, x) – kernel 
function.

With the utilisation of  the Karush-Kuhn-Tucker 
conditions, only a restricted number of coefficients 
will not be zero between ai and ai*. One may call the 
related data points the support vectors. In the D-di-
mensional feature space, the kernel function k (xi, x) 
describes the inner product, see Equation (14):

 	  (14)

where: D – dimension feature space; φj – mapping func-
tion.

This demonstrates that a dot product in a certain 
feature space corresponds to any symmetric kernel 
function k meeting Mercer’s condition. Three fac-
tors that are effective in the SVM performance are 
the ε error term, C penalty parameter, and kernel 
function parameter γ. This study adopts the medium 
radial basis function (RBF) kernel to perform SVM 
for predicting evapotranspiration due to its robust-
ness. The RBF kernel function can be  expressed 
by Equation (15):

 	  (15)

where: σ – variance.

Further details on the SVM can be found in Vap-
nik (1995).

Long short-term memory
Long short-term memory (LSTM) is  a  type 

of  recurrent neural network (RNN) proposed 
by Hochreiter and Schmidhuber (1997). LSTM has 
a similar architecture to an RNN with input, hidden, 
and output layers. However, the LSTM replaces the 
basic unit of a regular RNN with a memory block 
(Graves et  al. 2013). Long-term dependencies can 
be  modelled by  LSTM employing a  memory unit 
termed the cell state.

The LSTM memory block consists of three gates – 
the forget, input, and output gates (Yuan 2018). The 
designed network for this study consisted of  the fol-
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lowing parts: input time series data were fed into the 
‘sequence input layer’ of  the network followed by  an 
‘LSTM layer’, which further connects with the ‘fully 
connected layer’ of  several hidden neurons followed 
by a ‘regression output layer. The network architecture 
can be  further improved based on  the problem de-
pendencies by including an additional LSTM layer and 
dropout layer to prevent the model from being overfit 
(Roy 2021) (Figure 3). Thus, the features of LSTM can 
reduce the effects of the vanishing gradient problem.

The following Equations (16–17) represent the 
hidden and cell states at any time step t:

 	  (16)

 	  (17)

where: ht – output of the hidden layer at time t; ot – out
comes of the output gate at timespan t; – element-
wise multiplication of the vectors (Hadamard product); 
σc – state activation function [generally the hyperbolic 
tangent function (tanh)]; Ct – cell output state at time t; 
ft – outcomes of the forget gate at timespan t; it – out
comes of the input gate at timespan t; gt – outcomes of 
the candidate state at timespan t.

In LSTM, the first step is  to examine whether 
the information from the cell state is  remembered 
or forgotten. The calculation is expressed by Equa-
tion (18):

 	  (18)

where: Wf – weights connecting ht–1 and xt to the forget 
gate; xt – input at time t; ht–1 – output of the hidden layer 
at time t–1; bf – forget gate bias term.

The second step controls which data must be stored 
in the cell state. The tanh layer creates the new can-
didate value C̃ t after a sigmoid layer detects the val-
ues that need to be updated. The expression for the 
calculation is described by Equations (19–20):

 	  (19)

 	  (20)

The next step is  updating the previous cell state 
Ct–1 by multiplying Ct–1 by ft and adding it × C̃ t to ob-
tain the new value, see Equation (21):

( )σ= t t c th o C  

1−= + t t t t tC f C i g  

( )1σ ,−  ×= + t f t t ff W h x b  

( )1σ ,−  ×= + t i t t ii W h x b  

( )1tanh ,− ×= +


t C t t CC W h x b  
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 	  (21)

The cell state is passed via the tanh function and 
multiplied by the result of the sigmoid gate, and then 
a sigmoid layer is run to obtain the output according 
to Equations (22–23):

 	  (22)

 	  (23)

where: xt – input at  time t; ht–1 – output of  the hidden 
layer at time t–1; ht – output of the hidden layer at time t; 
Ct – cell output state at  time t; Ct–1 – cell output state 
at time t–1; C̃t – outcome of the input gate at timespan t;  
ft – outcomes of the forget gate at timespan t; ot – outcomes 
of the output gate at timespan t; Wc – weights connecting 
ht–1 and xt to the cell state; Wf – weights connecting ht–1 
and xt to the forget gate; Wi – weights connecting ht–1 and 
xt to the input gate; Wo – weights connecting ht–1 and xt 
to the output gate; bf – forget gate bias term; bi – forget 
gate bias term; bC – cell gate bias term; bo – forget gate bias 
term; tanh – hyperbolic tangent function ex − e–x/ex + e–x.

In LSTM networks for the ETo estimation, cell 
states capture long-term dependencies and patterns. 

1  −×= + × t t t t tC f C i C  

( )1σ ,−  ×= + t o t t oo W h x b  

( )tanh= ×t t th o C  

The cell state acts as a conveyor belt for information 
and is updated and controlled by gates. This allows 
the LSTM to  capture temporal dependencies and 
non-linear dynamics in  meteorological data, im-
proving the accuracy of the ETo predictions.

Data management scenarios
The selection of relevant input variables is critical 

for developing machine learning models since the 
variables provide essential information. This study 
compared the performances of  the LSTM, ANN, 
SVM, and empirical models with the observed ETo 
values. To evaluate all the machine learning and em-
pirical models under limited data conditions, four 
different combinations were considered for devel-
oping the machine learning models in  this study, 
and their respective input parameters are tabulated 
in Table 2. In addition, the developed machine learn-
ing models were compared with the corresponding 
empirical models according to their input variables.

Normalisation of data
Before applying the machine learning models 

to the data, it is wise to normalise all the input and 
output values to  reduce the convergence problems 
and disparities related to the different units. In this 
study, min-max normalisation is  implemented 

Figure 3. Block diagram of the long short-term memory (LSTM) network model
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to  scale the values of  the input parameters into 
a  typical range from zero to  one before inputting 
them into the model via the following formula:

 	  
(24)

where: norm (X) – normalised input data; X – raw input 
data; max (X) – maximum input data; min (X) – mini-
mum of the input data.

Local calibration
The performance of  empirical ETo models of-

ten varies among stations within the same climate 
zone due to the differences in the data quality, time 
periods used, and uncertainties in  the coefficient 
values for the ETo estimation. To  address this, the 
coefficients of all the empirical models were locally 
calibrated using the generalised reduced gradient 
(GRG) non-linear approach to  minimise the sum 
of square errors.

Performance assessment of the calibrated models
The following performance metrics were em-

ployed to  evaluate the trained models against the 
measured Lysimeter ETo values.

Coefficient of determination (R2), Equation (25):

 	  

(25)

The Nash Sutcliffe Efficiency (NSE), Equation (26):
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Root mean square error (RMSE), Equation (27):

 	  
(27)

where: N – amount of the total data; Yest,i – estimated ETo 
using the selected equations;       – mean of the estimated 
ETo values; Yobs,i – ETo calculated using the FAO PM 
model;        – mean of the observed ETo values.

To create a  perfect model, smaller RMSE values 
and higher R2 and NSE values are preferred.

RESULTS AND DISCUSSION

Local calibration of the empirical models. The 
calibrated coefficients are shown in Table 3. For in-
stance, the coefficients of  the Hargreaves Samani 
model were calibrated within the ranges of 0.0026 to 
0.0099, 13.468–9.147, and 0.336–0.534, compared 
to  the original coefficients of 0.0023, 17.8, and 0.5, 
respectively. Following calibration, the values for 
the Bangalore station were aligned with those from 
a study by Niranjan and Nandagiri (2021). Similarly, 
the coefficients of the Schendel model were adjusted 
for various stations. The modified coefficients for all 
the considered models, along with the original coef-
ficients, were tabulated for the ETo estimation. After 
calibration, the R2 values increased, and the RMSE 
values decreased across all the stations. Addition-
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Table 2. Machine learning models and their respective input parameters

Model Scenarios Input parameters

Temperature based models
LSTM1
ANN1
SVM1

maximum temperature (Tmax),
minimum temperature (Tmin),

mean temperature (Tmean),
extraterrestrial radiation (Ra)

Humidity-based models
LSTM2
ANN2
SVM2

mean temperature (Tmean),
mean relative humidity (RHmean)

Radiation-based models
LSTM3
ANN3
SVM3

maximum temperature (Tmax),
minimum temperature (Tmin),

mean temperature (Tmean),
solar radiation (Rs)

Wind speed-based models
LSTM4
ANN4
SVM4

maximum temperature (Tmax),
minimum temperature (Tmin),

wind speed (U2)
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ally, in this study, the performances of the developed 
machine learning models were compared solely us-
ing locally calibrated empirical equations.

Temperature-based models. The locally cali-
brated Hargreaves Samani model outperformed the 
original model. This finding contrasts with the find-
ings of Niranjan and Nandagiri (2021), who reported 
significant improvement in the estimation of the ETo 
across all the Bangalore zones using locally calibrated 
parameters. The performance of  the temperature-
based models is  depicted in  Figure 4. The figure 
shows that the LSTM1 model outperformed the oth-
er machine learning and empirical models that were 
considered. The highest coefficient of determination 
(0.88) was observed at  the Kovilpatti station, while 
the lowest RMSE value (0.705  mm·day–1) occurred 
at  the Bangalore station. Except for Tirupati, the 
SVM1 model underperformed compared to the other 
models at all the stations. In addition to the LSTM1 
model, the locally calibrated Hargreaves Samani 
model performed well at  all the locations. Figure  4 
shows that the mean R2 and RMSE values of  the 
LSTM1 model for the temperature-based approach 
are 0.775 mm·day–1 and 0.868 mm·day–1, respective-
ly, while for the other models, they are greater than 
0.982 mm·day–1. The NSE values exceeded 0.64 at all 
the stations for the LSTM1 model, whereas for the 
other considered models, they were less than 0.45.

Several studies have shown that incorporating 
temperature data and employing machine learn-
ing models can increase the accuracy of the ETo es-
timation (Fan et al. 2018; Ferreira et al. 2019; Chia 
et  al. 2020). However, in  this study, we  found that 
the accuracy of estimating the ETo was not improved 

by  the temperature-based ANN and SVM models. 
On the other hand, the findings of Wen et al. (2015) 
indicate that SVM-based machine learning models 
outperform empirical models. Additionally, Ferreira 
et al. (2019) discovered that, across the entire coun-
try of  Brazil, temperature-based DNN and SVM 
models provided more accurate predictions than 
the Hargreaves-Samani model. Notably, the perfor-
mance accuracy of machine learning models varies 
significantly by region (Sun et al. 2020).

Humidity-based models. This study compared 
the performances of  humidity-based LSTM2, 
ANN2, and SVM2 models with that of  the locally 
calibrated Schendel model. The results indicated that 
the LSTM2 model outperformed the other models, 
exhibiting a higher R2 value (0.64) and a lower RMSE 
value (< 0.92 mm·day–1). In contrast, the locally cali-
brated Schendel model showed less accurate per-
formance across all the weather stations, with an R2 
value of 0.72 and an RMSE value of 1.137 mm·day–1. 
On average, the R2 values of the calibrated Schendel, 
ANN2, and SVM2 models were 0.058, 0.066, and 
0.069 lower, respectively, than that of  the LSTM2 
model. The NSE values of the LSTM2 model for the 
Annamalai Nagar, Bangalore, Coimbatore, Kovil-
patti, and Tirupati stations were 0.627, 0.287, 0.614, 
0.738, and 0.812, respectively (Figure 5).

It should be noted that the humidity-based mod-
els, despite incorporating relative humidity as  an 
additional input, exhibited lower performance than 
the temperature-based models. This phenomenon 
is attributed to the absence of extraterrestrial radia-
tion as an input in the estimation of ETo in humid-
ity-based empirical models, whereas temperature-

Table 3. Original and calibrated coefficients of the considered empirical models

Model Original  
coefficients

Modified coefficients
Annamalai Nagar Bangalore Coimbatore Kovilpatti Tirupati

Hargreaves 
Samani

0.0023 0.0055 0.0026 0.0059 0.0099 0.0083
17.80 –2.88 9.15 –5.31 –13.47 –7.99

0.50 0.40 0.53 0.34 0.34 0.34
Schendel 16.00 12.46 11.60 10.11 11.35 10.54

Tabari

–0.478 –6.582 –3.360 –5.209 –8.724 –7.371
0.156 0.138 0.128 0.102 0.122 0.129
0.0112 –0.2230 –0.1560 –0.1920 –0.2500 –0.2390
0.0733 0.0559 0.0435 0.0934 0.1250 0.1040

Brockamp 
and Wenner

5.43 1.88 2.59 2.57 1.52 2.23
0.456 0.896 0.284 0.263 0.251 0.160
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based equations encompass this factor. However, the 
inclusion of relative humidity as an input in temper-
ature-based deep learning models and conventional 
machine learning models significantly enhanced the 
precision of the ETo estimation.

According to  Zhu et  al. (2020), the presence 
of  humidity parameters led to  the random forest 
and SVM models outperforming the LSTM and 
DNN models. Additionally, the results of  Kiafar 
et  al. (2017) corroborate that the estimation ac-
curacy of the Schendel model was inferior to that 
of the Hargreaves-Samani model. The performance 
of  the proposed humidity-based machine learn-
ing models surpassed that of the empirical model 
by  a  substantial margin, with the LSTM model 
demonstrating superior performance compared 

to the ANN and SVM models among the machine 
learning models.

Radiation-based models. At all the weather sta-
tions studied, the models based on radiation consist-
ently outperformed those based on temperature and 
humidity. When radiation parameters are incorpo-
rated, the machine learning models with tempera-
ture variables demonstrate more accurate ETo fore-
casting. The findings indicate that the deep learning 
model LSTM3 outperforms the other models, dis-
playing the highest R2 and NSE values and the low-
est RMSE values. The R2 value exceeds 0.9, the NSE 
value surpasses 0.77, and the RMSE value is less than 
0.84 mm·day–1 across all the weather stations, with 
the exception of the Coimbatore station (R2 = 0.82, 
NSE = 0.53, and RMSE = 0.92 mm·day–1). On aver-

Figure 4. Comparison of the observed reference evapotranspiration (ETo) and the temperature-based models for the 
testing period at (A) Tirupati station, (B) Kovilpatti station, (C) Coimbatore station, (D) Bangalore station, and (E) Anna-
malai Nagar station
LSTM – long short-term memory neural network; SVM – support vector regression; ANN – artificial neural network; 
HS – Hargreaves-Samani model; ET OBS – observed evapotranspiration
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age, the RMSEs of the radiation-based models were 
0.2 mm·day–1 and 0.15 mm·day–1 lower than those 
of the temperature-based and humidity-based mod-
els, respectively (Figure 6).

According to  experts, temperature and radiation 
parameters contribute to 80% of the variation in the 
reference evapotranspiration (Irmak et  al. 2003; 
Samani 2003; Tabari and Talaee 2011). These results 
align with those of Sharma et al. (2022), who found 
that the input combination of temperature and so-
lar radiation produced the best performance at the 
Ludhiana and Amritsar stations in  India. Sharma 
et  al. considered six different input combinations 
to  develop two hybrid deep learning networks. 
These conclusions also correspond with the find-
ings of Kaya et al. (2021), who determined that the 
combination of temperature and solar radiation im-

proved the performance using a multilayer percep-
tron. Moreover, they confirmed that solar radiation 
is  the most influential parameter in estimating the 
ETo using soft computing approaches.

Wind speed-based models. Based on  Figure 7, 
it can be concluded that among all the combinations 
of  input parameters, the machine learning models 
based on wind speed outperformed the others across 
all the stations under consideration. Specifically, the 
deep learning-based LSTM4 model demonstrated 
superior performance, yielding R2 > 0.88, RMSE 
<  0.6  mm·day–1, and NSE > 0.8. In  contrast, the 
empirical model exhibited the lowest performance, 
with an  RMSE exceeding 0.925  mm·day–1 relative 
to  the machine learning algorithms. The combina-
tion of the wind speed and temperature consistently 
delivered favourable results across all the stations, 

Figure 5. Comparison of the observed reference evapotranspiration (ETo) and humidity-based models for the testing 
period at (A) Tirupati station, (B) Kovilpatti station, (C) Coimbatore station, (D) Bangalore station, and (E) Annamalai 
Nagar station
LSTM – long short-term memory neural network; SVM – support vector regression; ANN – artificial neural network; 
HS – Hargreaves-Samani model; ET OBS – observed evapotranspiration
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unlike the other input combinations. Although the 
coefficient of determination of the empirical model 
surpassed that of  the other empirical models, it  is 
essential to locally calibrate the wind speed models 
(Sharafi and Mohammadi Ghaleni 2021).

Maroufpoor et al. (2020) suggested that the com-
bination of temperature and wind speed yields more 
accurate results across the various climates in Iran’s 
31 provinces. Moreover, Muhammad et  al. (2019) 
observed that models based on  wind speed were 
more dependable than those based on  radiation. 
In  recent years, there has been a  growing interest 
in  using machine learning models such as  ANNs, 
RFs, long short-term memory (LSTM) models, and 
support vector machines (SVMs) to  calculate the 

ETo with a minimal number of meteorological input 
factors. These machine learning models outperform 
traditional empirical equations. The superior per-
formance of the LSTM model can likely be attribut-
ed to its internal structure, which enables it to retain 
and utilise past information.

Vapour removal is  heavily dependent on  wind 
and air turbulence, which cause large volumes of air 
to flow across evaporating surfaces. As water evapo-
rates, the air above the surface becomes saturated 
with water vapour. Without the continuous exchange 
of  this air with drier air, the rates of  water vapour 
removal and evapotranspiration will decrease (Al-
len et al. 1998). For instance, in hot and dry weather 
conditions, the need for evapotranspiration is  sig-

Figure 6. Comparison of the observed reference evapotranspiration (ETo) and radiation-based models for the testing 
period at (A) Tirupati station, (B) Kovilpatti station, (C) Coimbatore station, (D) Bangalore station, and (E) Annamalai 
Nagar station
LSTM – long short-term memory neural network; SVM – support vector regression; ANN – artificial neural network; 
HS – Hargreaves-Samani model; ET OBS – observed evapotranspiration
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nificant due to  the low moisture content in  the air 
and the abundance of energy available in  the form 
of direct solar radiation and latent heat.

The findings of this study contradict those of pre-
vious research (Gonzalez del Cerro et  al. 2021; 
Niranjan and Nandagiri 2021), which concluded 
that wind speed has the least influence on  the es-
timation of  the ETo. A  comparison of  the perfor-
mances of the developed machine learning models 
and empirical models is presented in Table S1 in the 
electronic supplementary material (ESM). Addi-
tionally, the performance of  the developed LSTM 
models was assessed using box and whisker plots, 
as illustrated in Figure 8.

CONCLUSION

This study focuses on  the application of  machine 
learning models, including LSTM, ANN, and SVM, 
to estimate the ETo using a limited set of input param-
eters specific to tropical savannah climatic regions.

In this study, the performances of  the LSTM, 
ANN, and SVM models were compared with tradi-
tional empirical models, including Hargreaves-Sam-
ani, Schendel, Tabari, and Brockamp and Wenner. 
Notably, the performance of the developed machine 
learning models was superior to  that of  the tradi-
tional empirical formulas across all the considered 
locations. Specifically, the LSTM model exhibited 

Figure 7. Comparison of the observed reference evapotranspiration (ETo) and the wind speed-based models for the 
testing period at (A) Tirupati station, (B) Kovilpatti station, (C) Coimbatore station, (D) Bangalore station, and (E) Anna-
malai Nagar station
LSTM – long short-term memory neural network; SVM – support vector regression; ANN – artificial neural network; 
HS – Hargreaves-Samani model; ET OBS – observed evapotranspiration
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the highest performance when utilising a combina-
tion of maximum temperature, minimum tempera-
ture, and wind speed, with R2 values exceeding 0.75 
and RMSEs below 0.63 mm·day–1 at all the stations. 
Furthermore, the combination of  temperature and 
solar radiation (LSTM3) performed well in certain 
locations, while in others, the temperature and wind 
speed combination (LSTM4) yielded better results. 
Conversely, the performance of  the temperature-
based input combination was relatively lower, with 
RMSE values exceeding 0.9 mm·day–1.

The study also highlighted the potential of  the 
developed machine learning models in  providing 
accurate ETo estimations, particularly under data-
limited conditions. The findings indicated that the 
superior performance of  the LSTM model could 
be attributed to its ability to effectively retain or for-
get information, surpassing the capabilities of SVMs 
and ANNs. Ultimately, the implementation of  the 
developed machine learning models could provide 
valuable support to researchers, water management 
agencies, and irrigators by enabling accurate ETo es-

timations in tropical savannah climatic regions, even 
when meteorological data were limited.
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