Res. Agr. Eng., 2021, 67(1):1-7 | DOI: 10.17221/61/2020-RAE
Effect of drying temperature in hop dryer on hop qualityOriginal Paper
- Department of Agricultural Machines, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic
One of the qualitative characteristics of both green and dried hops is the content of hop essential oils which are contained in a quantity of 0.5 to 3.5%, depending on the hop variety. These essential oils are heat labile substances because the temperature has an influence on their content. Hop cones, dried either in belt or chamber dryers, are exposed to a drying medium temperature of 55 °C to 60 °C for the entire duration of drying, i.e. for 6-8 hours. Under current drying conditions there is a loss of approx. 15 to 25% of the total content of essential oils present in hops before drying. In case of special aroma hop varieties, such losses lead to a decline in the product quality. Comparative measurements have been carried out with a laboratory equipment to find out whether more aromatic essential oils are retained in hop cones at a drying temperature of 40 °C compared to a drying temperature of 60 °C. The measurement carried out with the most common variety of Saaz hop concluded that the essential oil losses were lower by 33.4% at a drying temperature of 40 °C, and with other seven mostly hybrid varieties the losses were lower on average by 13.9% than at a drying temperature of 60 °C. The measurements proved that each of the varieties retained, to a significant extent, its content of essential oils in the dried hop cones at a drying temperature of 40 °C.
Keywords: hop cones; hop drying; laboratory dryer; quality of hops
Published: March 31, 2021 Show citation
References
- Beigi M., Torki-Harchegani M., Tohidi M. (2017): Experimental and ANN modeling investigations of energy traits for rough rice drying. Energy, 141: 2196-2205.
Go to original source...
- Bohner M., Barfuss I., Heindl A., Muller J. (2009): Uniformity and energy consumption of a band drying process of parsley (Petroselinum crispum). Zeitschrift fur Arznei & Gewurzpflanzen, 14: 126-131.
- Doe P.E., Menary R.C. (1979): Optimization of the hop drying process with respect to alpha acid content. Journal of Agricultural Engineering Research, 24: 233-248.
Go to original source...
- Heřmánek P., Rybka A., Honzík I. (2017): Experimental chamber dryer for drying hops at low temperatures. Agronomy Research, 15: 713-719.
- Chokphoemphun S., Chokphoemphun S. (2018): Moisture content prediction of paddy drying in a fluidized-bed drier with a vortex flow generator using an artificial neural network. Applied Thermal Engineering, 145: 630-636.
Go to original source...
- Guine R.P.F., Barroca M.J., Goncalves F.J., Alves M., Oliveira S., Mendes M. (2015): Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chemistry, 168: 454-459.
Go to original source...
Go to PubMed...
- Kaveh M., Sharabiani V.R., Chayjan R.A., Taghinezhad E., Gilandeh Y.A., Golpour I. (2018): ANFIS and ANNs model for prediction of moisture diffusivity and specific energy consumption potato, garlic and cantaloupe drying under convective hot air dryer. Information Processing in Agriculture, 5: 372-381.
Go to original source...
- Kirbaş I., Tuncer A., Şirin C., Usta H. (2019): Modeling and developing a smart interface for various drying methods of pomelo fruit (Citrus maxima) peel using machine learning approaches. Computers and Electronics in Agriculture, 165: 104928.
Go to original source...
- Kocabiyik H., Tezer D. (2009): Drying of carrot slices using infrared radiation. International Journal of Food Science and Technology, 44: 953-959.
Go to original source...
- Kořen J., Ciniburk V., Podsedník J., Rybka A., Veselý F. (2008): Sušení chmele na komorových sušárnách. Metodika pro praxi. Žatec, Hop Research Institute Co. Ltd.
- Krofta K. (2008): Hodnocení kvality chmele. Metodika pro praxi. Žatec, Hop Research Institute Co. Ltd.
- Krofta K., Pokorný J., Ježek J., Klapal I., Mravcová L., Vondráčková P., Rybka A., Heřmánek P., Honzík I., Podsedník J., Melč J., Šrámek K., Kolman Z., Nádvorník J. (2017): Hodnocení kvalitativních parametrů chmele při sušení a stárnutí. Metodika pro praxi. Žatec, Hop Research Institute Co. Ltd. and Czech University of Life Sciences Prague.
- Kudra T. (2004): Energy aspects in drying. Drying Technology, 22: 917-932.
Go to original source...
- Lewicki P.P. (2006): Design of hot air drying for better foods. Trends in Food and Technology, 17: 153-163.
Go to original source...
- Mellmann J., Furll C. (2008): Drying facilities for medicinal and aromatic plants-specific energy consumption and potential for optimization. Zeitschrift fur Arznei & Gewurzpflanzen, 13: 127-133.
- Mujumdar A.S. (2006): Principles, classification, and selection of dryers. In: Mujumdar A.S. (ed): Handbook of Industrial Drying. New York, Marcel Dekker: 3-31.
Go to original source...
- Przybyl K., Gawelek J., Koszelaa K., Wawrzyniak J., Gierz L. (2018): Artificial neural networks and electron microscopy to evaluate the quality of fruit and vegetable spray-dried powders. Case study: Strawberry powder. Computers and Electronics in Agriculture, 155: 314-323.
Go to original source...
- Rettberg N., Biendl M., Garbe L.A. (2018): Hop aroma and hoppy beer flavour: Chemical backgrounds and analytical tools - A review. Journal of the American Society of Brewing Chemists, 76: 1-20.
Go to original source...
- Rybáček V., Fric V., Havel J., Libich V., Kříž J., Makovec K., Petrlík Z., Sachl J., Srp A., Šnobl J., Vančura M. (1980): Chmelařství. Prague, SZN.
- Rybka A., Heřmánek P., Honzík I. (2017): Theoretical analysis of the technological process of hop drying. Agronomy Research, 15: 859-865.
- Şahinbaskan T., Kose E. (2010): Modelling of time related drying changes on matte coated paper with artificial neural networks. Expert Systems with Applications, 37: 3140-3144.
Go to original source...
- Sharma G.P., Prasad S. (2006): Specific energy consumption in microwave drying of garlic cloves. Energy, 31: 1921-1926.
Go to original source...
- Schönberger C., Kostelecký T. (2011): 125th anniversary review: The role of hops in brewing. Journal of the Institute of Brewing, 117: 259-267.
Go to original source...
- Tarhan S., İsa Telci I., Tuncay M.T., Polatci H. (2011): Peppermint drying performance of contact dryer in terms of product quality, energy consumption, and drying duration. Drying Technology, 29: 642-651.
Go to original source...
- Vitázek I., Havelka J. (2014): Sorption isotherms of agricultural products. Research in Agricultural Engineering, 60: S52-S56.
Go to original source...
- Winiczenko R., Gornicki K., Kaleta A., Martynenko A., Janaszek-Mańkowska M., Trajer J. (2018): Multi-objective optimization of convective drying of apple cubes. Computers and Electronics in Agriculture, 145: 341-348.
Go to original source...
- Youssefi S.H., Emam-Djomeh Z., Mousavi S.M. (2009): Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Drying Technology, 27: 910-917.
Go to original source...
- Zhang W., Ma H., Simon X.Y. (2015): A neuro-fuzzy decoupling approach for real-time drying room control in meat manufacturing. Expert Systems with Applications, 42: 1039-1049.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.