Res. Agr. Eng., 2021, 67(2):84-91 | DOI: 10.17221/67/2020-RAE
Optimisation of concurrent Calophyllum oil-resin extraction and separationOriginal Paper
- 1 Department of Agroindustrial Technology, IPB University, Bogor, Indonesia
- 2 Laboratoire de Chimie Agro-industrielle, INP de Toulouse, Toulouse, France
- 3 Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
- 4 Department of Chemistry, Institut Teknologi Bandung, Bandung, Indonesia
- 5 Department of Chemistry, Universitas Airlangga, Surabaya, Indonesia
- 6 Department of Food Science and Technology, IPB University, Bogor, Indonesia
This research optimised the application of a hexane-methanol mixture as a binary solvent for the concurrent oil-resin extraction and separation from Calophyllum seeds on a pilot scale, in a direct stage. The optimum oil and resin yields were determined by optimising the extraction conditions using response surface methodology and a second order polynomial model. The extraction conditions affected the oil and resin yields, with the extraction time as the biggest influencing factor. Optimum oil (65%) and resin (16%) yields were predicted to be obtained at 5.2 h and 433 rpm. The model validation with these extraction conditions showed that the predicted results and actual oil (62%) and resin (15%) yields were in passable agreement. The oil was composed of 75.4% triglycerides with a density of 0.874 g.cm-3, a viscosity of 26.4 mPa.s-1, an acid value of 46.4 mg KOH.g-1, an iodine value of 98.0 g iodine.100 g-1, trace water and sediment contents, and zero ash content. The resin had a viscosity of 4 694.8 mPa.s-1, a total phenolic content of a 4.51% gallic acid equivalent, an antioxidant activity of an 8.82 mg ascorbic acid equivalent.g-1, and an acid value of 126.2 mg KOH.g-1.
Keywords: binary; n-hexane; methanol; phenolic; antioxidant
Published: June 30, 2021 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Adewuyi A., Fasusi O.H., Odorinde R.A. (2014): Antibacterial activities of acetonides prepared from the seed oils of Calophyllum inophyllum and Pterocarpus osun. Journal of Acute Medicine, 4: 75-80.
Go to original source...
- Arumugam A., Ponnusami V. (2019): Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renewable Energy, 131: 459-471.
Go to original source...
- Boucher C. (2000): Calophyllum oil extracted at ambient temperature has UV protecting, antiradical, antioxidant, anti aging and therapeutic properties. France Patent FR9907772A. Dec 22, 2000.
- Dai J., Mumper R.J. (2010): Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15: 7313-7352.
Go to original source...
Go to PubMed...
- Dweck A.C., Meadows T. (2002): Tamanu (Calophyllum inophyllum)-The African, Asian, Polynesian and Pacific Panacea. International Journal of Cosmetic Science, 24: 1-8.
Go to original source...
Go to PubMed...
- Ginigini J., Lecellier G.J., Nicolas M., Nour M., Hnawia E., Lebouvier N., Herbette G., Lockhart P., Raharivelomanana P. (2019): Chemodiversity of Calophyllum inophyllum L. oil bioactive components related to their specific geographical distribution in the South Pacific region. PeerJ, 7: e6896.
Go to original source...
Go to PubMed...
- Indartono Y.S., Heriawan H., Kartika I.A. (2019): Innovative and flexible single screw press for the oil extraction of Calophyllum seeds. Research in Agricultural Engineering, 65: 91-97.
Go to original source...
- Jahirul M.I., Brown R.J., Senadeera W., Ashwath N., Rasul M.G., Rahman M.M., Hossain F.M., Moghaddam L., Islam M.A., O'Hara I.M. (2015): Physio-chemical assessment of beauty leaf (Calophyllum inophyllum) as second-generation biodiesel feedstock. Energy Reports, 1: 204-215.
Go to original source...
- Jain M., Chandrakant U., Orsat V., Raghavan V. (2018): A review on assessment of biodiesel production methodologies from Calophyllum inophyllum seed oil. Industrial Crops and Products, 114: 28-44.
Go to original source...
- Kartika A.I., Yani M., Ariono D., Evon P., Rigal L. (2013): Biodiesel production from jatropha seeds: Solvent extraction and in situ transesterification in a single step. Fuel, 106: 111-117.
Go to original source...
- Kartika I.A., Bernia O.T.O., Sailah I., Prakoso T., Purwanto Y.A. (2019): A binary solvent for the simultaneous Calophyllum oil-resin extraction and purification. Research in Agricultural Engineering, 65: 63-69.
Go to original source...
- Kartika A.I., Evon P., Cerny M., Suparno O., Hermawan D., Ariono D., Rigal L. (2016): Simultaneous solvent extraction and transesterification of jatropha oil for biodiesel production, and potential application of the obtained cakes for binderless particleboard. Fuel, 181: 870-877.
Go to original source...
- Kartika A.I., Cerny M., Vandenbossche V., Rigal L., Sablayrolles C., Vialle C, Suparno O., Ariono D., Evon Ph. (2018): Direct Calophyllum oil extraction and resin separation with a binary solvent of n-hexane and methanol mixture. Fuel, 221: 159-164.
Go to original source...
- Kolb J.P., Menasria F., Billard C., Meyer M., Azebaze A.G., Nkengfack A.E. (2011): Use of xanthone derivatives as a medicament for cancer. US Patent US20110263694A1. Oct 27, 2011.
- Lee C.G., Seng C.E., Liew K.Y. (2000): Solvent efficiency for oil extraction from spent bleaching clay. Journal of the American Oil Chemists' Society, 77: 1219-1222.
Go to original source...
- Léguillier T., Lecsö-Bornet M., Lémus C., Rousseau-Ralliard D., Lebouvier N., Hnawia E., Nour M., Aalbersberg W., Ghazi K., Raharivelomanana P., Rat P. (2015): The wound healing and antibacterial activity of five ethno medical Calophyllum inophyllum oils: An alternative therapeutic strategy to treat infected wounds. PLoS ONE, 10: e0138602.
Go to original source...
Go to PubMed...
- Liu W., Liu Y., Chen Z., Chiou W., Tsai Y., Chen C. (2015): Calophyllolide content in Calophyllum inophyllum at different stages of maturity and its osteogenic activity. Molecules, 20: 12314-12327.
Go to original source...
Go to PubMed...
- Montgomery D.C. (2001): Design and Analysis of Experiments. 5th Ed. New York, John Wiley & Sons, Inc.
- Nariya P.B., Bhalodia N.R., Shukla V.J., Acharya R., Nariya M.B. (2013): In vitro evaluation of antioxidant activity of Cordia dichotoma (Forst f.) bark. AYU An International Quarterly Journal of Research in Ayurveda, 34: 124-128.
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.