Res. Agr. Eng., 2023, 69(2):65-75 | DOI: 10.17221/86/2021-RAE

Comparison of the machine learning and AquaCrop models for quinoa cropsOriginal Paper

Rossy Chumbe, Stefany Silva, Yvan Garcia
Department Industrial Engineering, Faculty of Engineering, University of Lima, Lima, Peru

One of the main causes of having low crop efficiency in Peru is the poor management of water resources; which is why the main objective of this article is to estimate the amount of irrigation water required in quinoa crops through a comparison between the machine learning and AquaCrop models. For the development of this study, meteorological data from the province of Jauja and descriptive data of quinoa crops were processed and a simulation period was established from June to December 2020. From the simulation carried out, it was determined that the best model to predict the required irrigation water is the Adaptive Boosting (AdaBoost) model in which it was observed that the mean and standard deviation of the AdaBoost models (mean = 19.681 and SD = 4.665) behave similarly to AquaCrop (mean = 19.838 and SD = 5.04). In addition, the result of ANOVA was that the AdaBoost model has the best P-value indicator with a value of 0.962 and a smaller margin of error in relation to the mean absolute error (MAE) indicator with a value of 0.629. Likewise, it was identified that, for the simulation period of 190 days, 472.35 mm of water was required to carry out the irrigation process in red quinoa crops.

Keywords: AdaBoost; irrigation system; predictive analysis; statistical analysis; water management

Published: May 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Chumbe R, Silva S, Garcia Y. Comparison of the machine learning and AquaCrop models for quinoa crops. Res. Agr. Eng. 2023;69(2):65-75. doi: 10.17221/86/2021-RAE.
Download citation

References

  1. Aguilar Aguilar A.C., Obando-Díaz F.F. (2020): Aprendizaje automático para la predicción de calidad de agua potable. Ingeniare, 28: 47-62. Go to original source...
  2. Alavi G., Diels J., Willems P., García M. (2015): Simulación de la producción de quinua en el altiplano boliviano con el modelo de Aquacrop con escenarios futuros generados por LARS-WG y QPM. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 2: 7-13.
  3. Bazile D., Bertero H.D., Nieto C. (2014): Estado del Arte de la Quinua en el Mundo en 2013. Santiago du Chili, FAO-CIRAD.
  4. Beltrán C., Barbona I. (2021): Comparación del desempeño de Árboles de clasificación y Redes Neuronales en la clasificación politómica mediante simulación. Revista de Epistemología y Ciencias Humanas, 14: 2-11.
  5. Brentan B.M., Luvizotto E., Herrera M., Izquierdo J., Pérez-García R. (2017): Hybrid regression model for near real-time urban water demand forecasting. Journal of Computational and Applied Mathematics, 309: 532-541. Go to original source...
  6. Fajardo H., García M., Raes D., Van Gaelen H. (2016): Validación del modelo Aquacrop para diferentes niveles de fertilidad en el cultivo de quinua en el Altiplano Boliviano. Revista CINTEX, 21: 31-52.
  7. Food and Agriculture Organization of the United Nations (2021): AquaCrop. Available at http://www.fao.org/aquacrop/overview/es/ (accessed July 22, 2021).
  8. Georganos S., Grippa T., Niang Gadiaga A., Linard C., Lennert M., Vanhuysse S., Mboga N., Wolff E., Kalogirou S. (2019): Geographical random forests: A spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto International, 36: 121-136. Go to original source...
  9. Hablemos del campo (2018): Machine Learning en la Agricultura. Available at https://www.hablemosdelcampo.com/machine-learning-en-la-agricultura/ (accessed Sept 17, 2021).
  10. INEI (2017): Junin Compendio Estadistico 2017. Available at http://www.keneamazon.net/Documents/INEI/Junin.pdf (accessed July 22, 2021).
  11. Kao Y.F., Venkatachalam R. (2021): Human and machine learning. Computational Economics, 57: 889-909. Go to original source...
  12. Lei J. (2020): Cross-validation with confidence. Journal of the American Statistical Association, 115: 1978-1997. Go to original source...
  13. Marroquin-Peralta J.M., Garcia-Lopez Y.J., Taquia-Gutierrez J.A. (2021): Machine learning: Comparison of algorithms for determining water quality in the Rímac river. Turkish Journal of Computer and Mathematics Education, 12: 552-572.
  14. Ministry of Agrarian Development and Irrigation (Midagri) (2020): Análisis de Mercado 2015-2020. Quinua. Available at https://cdn.www.gob.pe/uploads/document/file/1479275/An%C3%A1lisis%20de%20Mercado%20-%20Quinua%202015%20-%202020.pdf (accessed Aug 16, 2021).
  15. Wu T., Zhang W., Jiao X., Guo W., Hamoud Y.A. (2020): Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables. PLoS ONE, 15: e0235324. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.