Res. Agr. Eng., 2004, 50(1):15-22 | DOI: 10.17221/4921-RAE

Post-drying of energy sorrel in a grate stock

P. Hutla, J. Mazancová
Research Institute of Agricultural Engineering, Prague, Czech Republic

Energy sorrel is a crop with high-yield potential and belongs among the most promissing energy crop for the Czech Republic. The suitable processing technology is harvest by the harvesting cutter with subsequent short-time storage and post-drying of chopped material in the large-capacity hayloft. For chopped sorrel were found-out hydraulic air losses during its passing through the stored layer and they were compared with values for stored forage. Two methods of drying ventilators controlling in the large-capacity heyloft were compared with the regime of time switching within chopped sorrel drying. Electric energy comsumption for ventilators drive in different regimes depends on water content in the material. Method of ventilators or time switching controlling has no effect on drying process result, thus even on water content reduction in the dried material. Under operational conditions the possibility of the chopped energy sorrel in large-capacity heyloft was verified.

Keywords: pressure drops; large-capacity hayloft; chopped energetic straw; energy sorrel

Published: March 31, 2004  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hutla P, Mazancová J. Post-drying of energy sorrel in a grate stock. Res. Agr. Eng. 2004;50(1):15-22. doi: 10.17221/4921-RAE.
Download citation

References

  1. ASAE D272.3, 1997. Resistance to airflow of grains, seeds, other agricultural products, and perforated metal sheets. ASAE standards. St Joseph, MI.
  2. HUTLA P., SLADKÝ V., 2001. Optimal drying of energetical wooden chips. Res. Agr. Eng., 47: 104-109.
  3. KUMAR A., MUIR W.E., 1986. Airflow resistance of wheat and barley affected by airflow direction, filling method and dockage. Trans. ASAE, 29: 1423-1426. Go to original source...
  4. NEALE M.A., MESSER H.J.M., 1976. Resistance of root and bulb vegetables to airflow. Proc. of the American Society Sugar Beet Technologists, 21: 221-231. Go to original source...
  5. NEUBERGER P., HUTLA P., 1996. Řízení provozů sušení sena. In: Možnosti využití energetických zdrojů v zemědělství. Praha - České Budějovice, TF ČZU - VÚZT: 56-64.
  6. OBERHUBER B., SIMADER G., 1999. Solargetrocknete Hackschnitzel. Erneubare Energie, 2: 26-27.
  7. PATIL R.T., SOKHANSAJ S., ARINZE E.A., SCHOENAU G.J., 1993. Methods of expediting drying rates of chopped alfalfa. Trans. ASAE, 36: 1799-1803. Go to original source...
  8. PETŘÍKOVÁ V., 2003. Pěstování energetických rostlin a jejich využití. Alternativní Energie, 5: 24-26.
  9. SLADKÝ V., 1986. Výroba sena v halových senících. Met. Zavád. Výsl. Výzk. Praxe. Praha, ÚVTIZ, 16: 74.
  10. SLADKÝ V. et al., 1985. Manipulační a automatizační zařízení pro halové seníky. [Výzkumná zpráva.] Praha, VÚZT: 72.
  11. ŠTENCL J., HOMOLA P., SLADKÝ V., 1999. Proposal of a new method of control of the near ambient air drying process of forage in a deep layer in real time. Zeměd. Techn., 45: 37-40.
  12. TABIL L.G., WHITE R., KIENHOLZ J., QI H., ELIASON M.V., 1999. Airflow resistance of sugar beet. ASAE Paper. 1999 ASAE/CSAE Annual International Meeting. Toronto, Ontario.
  13. VÁŇA J., 2003. Energie z biomasy - nejdůležitější segment obnovitelných energií v ČR. Alternativní Energie, 5: 27-39.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.