Res. Agr. Eng., 2012, 58(2):57-65 | DOI: 10.17221/43/2011-RAE

Analysis of rock mass borehole temperatures with vertical heat exchanger

R. Adamovský, L. Mašek, P. Neuberger
Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Prague, Czech Republic

The goal of the article is to analyze the distribution and changes of temperatures in boreholes with the rock mass/fluid tubular heat exchangers used as an energy source for the heat pump. It also aims at documenting changes of temperatures in the rock mass during stagnation and heat extraction, and to compare the temperatures in the active and referential borehole. The testing results showed that temperatures of the rock mass reached a minimal value of 1.3°C at depths of 9 m and 20 m with maximal heat extraction corresponding to minimal air temperatures. The temperatures of the rock mass increased near the end of the heating season to values which correspond to the initial values. The temperature differences of the rock mass between the reference borehole and active boreholes increased to up to 10.5 K during the heating season. However, the temperature differences at the end of the heating season between the reference and active boreholes dropped back to 0.5-1.1 K.

Keywords: geothermal; heat pumps; temperature laps rate; thermal conductivity; thermal resistance; heat capacity

Published: June 30, 2012  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Adamovský R, Mašek L, Neuberger P. Analysis of rock mass borehole temperatures with vertical heat exchanger. Res. Agr. Eng. 2012;58(2):57-65. doi: 10.17221/43/2011-RAE.
Download citation

References

  1. Abu-Hamdeh N., Khadair A., Reeder R., 2001. A comparison of two methods used to evaluate thermal conductivity for some soils. International Journal of Heat Mass Transfer, 44: 1073-1078. Go to original source...
  2. Adam D., Markiewicz R., 2002. Nutzung der geothermischen Energie mittels erdberührter Bauwerke. Tl. 1: Theoretische Grundlagen. Österreichische Ingenieur- und Architekten-Zeitschrift, 147: 120-138.
  3. Brandl H., 2006. Energy foundations and other thermoactive ground structures. Géotechnique, 56: 81-122. Go to original source...
  4. Čížek P., 2005. Zemní tepelné výměníky tepelných čerpadel se neobejdou bez podzemní vody (Ground Heat Exchangers of Heat Pumps Do Not Do Without Ground Water). Available at http://www.geolog.cz/odborne_clanky/Cizek%20TC%20a%20voda.htm
  5. Drbal J., 1986. Geologie a půdoznalství (Geology and Soil Science). Prague, University of Agricultural Prague: 175.
  6. Gehlin S., 2002. Thermal Response Test: Method Development and Evaluation. [Ph.D. Thesis.] Lulea, Lulea University of Technology: 57.
  7. Gustafsson A.M., Westerlund L., 2011. Heat extraction thermal response test in groundwater-filled borehole heat exchanger - Investigation of borehole thermal resistance. Renewable Energy, 36: 2388-2394. Go to original source...
  8. Eskilson P., 1987. Thermal Analysis of Heat Extraction Boreholes. Lund, Lund Institute of Technology: 137.
  9. Javed S., Fahlén P., 2011. Thermal response testing of a multiple borehole ground heat exchanger. International Journal of Low Carbon Technologies, 6: 141-148. Go to original source...
  10. Khalajzaden V., Heidarinejad G., Srebric J., 2011. Parameters optimization of a vertical ground heat exchanger based on response surface methodology. Energy and Buildings, 43: 1288-1294. Go to original source...
  11. Kharseh M., Nordell B., 2011. Sustainable heating and cooling systems for agriculture. International Journal of Energy Research, 35: 415-422. Go to original source...
  12. Kutílek M., 1978. Vodohospodářská pedologie (Water Management Pedology). Prague, SNTL: 295.
  13. Oertel H., 2001. Prandtl: Führer durch die Strömungslehre. Braunschweig/Wiesbaden: Friedrich Vieweg & Sohn Verlagsgesellschaft mbH. Go to original source...
  14. Partenay V., Riederer P., Salque T., Wurtz E., Partenay V., 2011. The influence of the borehole short-time response on ground source heat pump system efficiency. Energy and Buildings, 43: 1280-1287. Go to original source...
  15. Rees S.W., Adjali M.H., Zhou Z., Davies M., Thomas H.R., 2000. Ground heat transfer effects on the thermal performance of earth-contact structures. Renewable and Sustainable Energy Reviews, 4: 213-265. Go to original source...
  16. Rybach L., Sanner B., 2000. Ground - Source Heat Pump Systems the European Experience. GHC Bulletin: 1-26.
  17. Šesták J., Bukovský J., Houška M., 1993. Tepelné pochody - transportní a termodynamická data (Heat-transport Processes and Thermodynamic Data). Prague, Czech Technical University in Prague: 245.
  18. Xiaolong M., Grabe J., 2011. Steigerung der Effizienz von Erdwärmesonden durch Luftinjektion an Standorten ohne Grundwasserströmung. Geotechnik, 34: 42-50. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.