Res. Agr. Eng., 2014, 60(10):S77-S84 | DOI: 10.17221/39/2013-RAE
Design of active stability control system of agricultural off-road vehiclesOriginal Paper
- Department of Machine Design, Faculty of Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
Part of active stability control system design of an agricultural technological vehicle designated for working in mountain and foothill areas is described. The principle of active control of angular velocities of the centre of gravity has been used. During the manoeuvre, active tipping axes are identified by orientation of the weight vector. From experimental tests of a machine MT8-222 based on the Standard STN 47 0170, the real records of angular velocities were obtained. Tests were executed on the slope with an average slope of 32 degrees. From computation critical angular velocities were gained, by which the machine could get into the position of labile stability during the manoeuvre. The regulator was simulated in Matlab® which controlled the actual value of angular velocity compared with the critical one. In case the boundary zone of critical angular velocity was reached, the regulator sends a signal to the fuel control system and then vehicle speed decreased. During experimental tests, the vehicle did not turn over. Therefore, the angular velocity was simulated by a generated function so that the functionality of the designed regulator was verified.
Keywords: vehicle dynamics; mathematical modelling; simulation
Published: December 31, 2014 Show citation
References
- Arborio N., Munaretto P., Velardocchia M., Riva N., Suraci E., 2000. Vehicle Dynamics and Stability Analysis with Matlab and Adams Car. Available at http://web.mscsoftware.com/support/library/conf/adams/euro/2000/Fiat_Poli_Vehicle_Dynamics.pdf
- Bradley J., Tansley G.D., Dominy J., 2009. A modeling strategy for vehicle dynamics using Pro/ENGINEER. International Sports Engineering Association, 11: 119-129.
Go to original source...
- BMW, 2013. Dynamic Stability Control (DSC). Available at http://www.bmw.com/com/en/insights/technology/technology_guide/articles/mm_dynamic_stability_control.html (accessed October 16, 2013).
- Chisholm C.J., 1979a. A Mathematical model of tractor overturning and impact behaviour. Journal of Agricultural Engineering Research, 24: 375-394.
Go to original source...
- Chisholm C.J., 1979b. Experimental validation of a tractor overturning simulation. Journal of Agricultural Engineering Research, 24: 395-415.
Go to original source...
- European Agency for Safety and Health at Work, 2011. Maintance in Agriculture - A Safety and Health Guide. Luxembourg, Publication Office of the European Union: 57.
- Fassbender F.R., Fervers C.W., Harnisch C., 2007. Approaches to predict the vehicle dynamics on soft soil. Vehicle System Dynamics Supplement, 27: 173-188.
Go to original source...
- Genta G., 2006. Motor Vehicle Dynamics - Modeling and Simulation. Singapore, World Scientific Publishing Co. Pte. Ltd.: 537.
- Gold A., 2013. Electronic stability control (ESC). Available at http://cars.about.com/od/thingsyouneedtoknow/a/ESC.htm (accessed October 16, 2013).
- Grečenko A., 1983. Dynamická stabilita jako součást svahové dostupnosti zemědelských strojů. [Dynamic stability as part of side slope stability of agricultural machinery.] Zemědelská technika, 29: 643-658.
- Grečenko A., 1986. Metoda určování svahové dostupnosti zemědelských vozidel. [Method of determination of side slope stability of agricultural vehicles.] Zemědelská technika, 32: 577-598.
- Jobbágy J., Simoník J., 2006. Porovnanie dvoch metód stanovenia vlhkosti pôdy. [Comparison of two methods of soil moisture determination.] Acta Horticulturae et Regiotecturae, 8: 213-217.
- MacDonald G.A., 1990. A review of low cost accelerometers for vehicle dynamics. Sensors and Actuators A: Physical, 21: 303-307.
Go to original source...
- McNair K.M., 2007. MEMS sensor fusion for vehicle dynamic control. In: Vehicle Dynamic Expo 2007, May 8-10, 2007, Stuttgart: 1-18.
- Mikleš M., Tkáč Z., Jablonický J., Hujo Ľ., Krilek J., 2011. Lesnícke stroje a zariadenia. [Forestry Machines and Mechanisms.] Zvolen, Technická univerzita vo Zvolene: 294.
- Mitsubishi Motors Corporation, 2013. ASC (Active Stability Control). Available at http://www.mitsubishi-motors.com/en/spirit/technology/library/asc.html (accessed October 16, 2013).
- Pacejka H.B., 2005. Tire and Vehicle Dynamics, 2nd Ed. SAE International: 642.
- SAE J670_200801. Vehicle Dynamics Terminology. Warrendale, SAE International.
- Schwanghart H., 1987. Kipp-umsturzverhalten eines schleppers. Landtechnik, 11: 489-490.
- Spencer H.B., Gilfillan G., 1976. An Approach to the assessment of tractor stability on rough sloping ground. Journal of Agricultural Engineering Research, 21: 169-176.
Go to original source...
- Strassberger M., Guldner J., 2004. BMW's dynamic drive: an active stabilizer bar system. IEEE Control Systems Magazine, 24: 28-29, 107.
Go to original source...
- STN 47 0170, 2001. Poľnohospodárske stroje a traktory. Stanovenie svahovej dostupnosti. Bezpečnosť práce. [Agricultural tractors and machinery. Gradeability test methods. Safety of work.]
- Šesták J., Sklenka P., Škulavík J., Markovič M., 1987. Statická stabilita a svahová dostupnosť horskej kosačky MT8-046-SP2-212 a samojazdného zberacieho voza MT6063, ASN-055. [Static stability and side slope stability of mountain mower-machine MT8-046-SP2-212 and of selfdriven collecting vehicle MT6-063, ASN-05.] Zemědělská technika, 33: 105-122.
- Šesták J., Sklenka P., Škulavík J., Markovič M., 1989. Dynamická stabilita univerzálnej horskej hnacej jednotky MT8-046. [Dynamic stability of universal mountain driving unit MT8-046.] Zemědelská technika, 35: 579-596.
- Šesták J., Sklenka P., Škulavík L., 1993. Matematické modely terénnych vozidiel určené na popis ich správania pri práci na svahu. [Mathematical models of terrain vehicles determined to describe their behaviour while working on the slope.] Nitra, SUA in Nitra: 91.
- Šesták J., Rédl J., Markovič M., 2000. Stanovenie svahovej dostupnosti poľnohospodárskych vozidiel. [Assessment of side slope stability of agricultural vehicles.] Research of Agricultural Engineering, 46: 53-58.
- Zolotas A.C., Pearson J.T., Goodall R.M., 2006. Modelling requirements for the design of active stability control strategies for a high speed bogie. Multibody System Dynamics, 15: 51-66.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.