Res. Agr. Eng., 2022, 68(1):1-8 | DOI: 10.17221/49/2021-RAE

Retroreflection of traffic signing for the safe operation of agricultural machineryOriginal Paper

Lukáš Jan Hrabánek*, Miroslav Růžička
Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences, Prague, Czech Republic

Recent studies have discussed the increasing number of accidents caused by agricultural machinery and tractors, specifically on higher-class roads. High-quality traffic signage with the required retroreflection can prevent these serious accidents, especially under reduced visibility conditions. The retroreflective materials are divided into three classes: RA1, RA2 and RA3 according to their optical performance. This distribution apparently turned out to be insufficient, as significantly different optical materials may be assigned to the same class. This research focused on the detailed optical resolution of retroreflecting sheeting with the aim to support enhancement of the current standards. The coefficient of retroreflection (CR) was measured under standard requirements. It was concluded that the combination of 3M 3930 sheeting (CR = 7.81) and 3M 4090 (CR = 9.03) sheeting is not recommended, as the difference between these values and the other monitored samples is significantly higher than CR = 2. Especially with the introduction of autonomous mobility, the recognition of signs will also have fundamental effects on agricultural technologies, where elements of independent mobility will be gradually introduced.

Keywords: coefficient of retroreflection; retroreflective sheeting; safety; tractors; traffic accident

Published: January 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Hrabánek LJ, Růžička M. Retroreflection of traffic signing for the safe operation of agricultural machinery. Res. Agr. Eng. 2022;68(1):1-8. doi: 10.17221/49/2021-RAE.
Download citation

References

  1. 3M (2008): Visibility & Safety for the Life of the Road. [Dataset]. Available at https://www.adh.com.co/images/fichas_tecnicas/SENALIZACION/REFLECTIVOS_3M/3m-teoriareflectividad-y-angularidad-senalizacion.pdf (accessed Oct 1, 2021)
  2. Amparano F.E., Morena D.A. (2006): Marking the way to greater safety. Public Roads, 70: 52-60.
  3. Boggs W., Heaslip K., Louisell C. (2013): Analysis of sign damage and failure: Utah case study. Transportation Research Record, 2337: 83-89. Go to original source...
  4. Borowsky A., Shinar D., Parmet Y. (2008): Sign location, sign recognition, and driver expectancies. Transportation Research Part F: Traffic Psychology and Behaviour, 11: 459-465. Go to original source...
  5. Carlson P.J., Hawkins Jr. H.G. (2002): Minimum retroreflectivity for overhead guide signs and street name signs. Transportation Research Record, 1794: 38-48. Go to original source...
  6. Casado-Sanz N., Guirao B., Gálvez-Pérez D. (2019): Population ageing and rural road accidents. Analysis of accident severity in traffic crashes with older pedestrians on Spanish crosstown roads. Research in Transportation Business and Management, 30: 1-12. Go to original source...
  7. Chao C.W., Huang C.H., Tsai T. (2013): The age effects of traffic signs on visual performance. Life Science Journal, 10: 297-302.
  8. ČSN EN 12899-1 (2008): Stálé svislé dopravní značení - Část 1: Stálé dopravní značky. ICS 93.080.30. Praha: ÚNMZ.
  9. EOTA - European Organisation for Technical Assessment (2016): Microprismatic retro-reflective sheetings. European Technical Assessment (ETA). [Dataset]. Available at https://ec.europa.eu/eurostat/web/products-statisticalbooks/-/ks-ei-17-001. (accessed Oct 1, 2021)
  10. Eurostat (2017): Key Figures on Europe - 2017 Edition. [Dataset]. Available at https://ec.europa.eu/eurostat/documents/3217494/8309812/KS-EI-17-001-EN-N.pdf/b7df53f5-4faf-48a6-aca1-c650d40c9239 (accessed Oct 1, 2022)
  11. Federal Highway Administration (2012): Minimum Sign Retroref lectivity Requirments. [Dataset]. Available at https://safety.fhwa.dot.gov/roadway_dept/night_visib/policy_guide/sign_15mins/ (accessed Sep 29, 2021).
  12. Hawkins Jr. H.G., Carlson P.J., Chrysler S.T. (2005): Headlamp luminous intensity matrix adjustment factors for modeling traffic sign performance. Journal of Passenger Car: Mechanical Systems Journal, 114: 1960-1973. Go to original source...
  13. Howe S.J. (2006): Assessment of traffic signs for retroreflectivity. In: Proceedings of the 1st World Congress on Engineering Asset Management. Gold Coast, Australia, July 11-14, 2006: 1080-1089. Go to original source...
  14. Hummer J.E., Harris E.A., Rasdorf W. (2013): Simulationbased evaluation of traffic sign retroreflectivity maintenance practices. Journal of Transportation Engineering, 139: 556-564. Go to original source...
  15. Institute of Health Information and Statistics of the Czech Republic (2014): Evropské výběrové šetření o zdraví [Dataset]. Available at https://ehis.uzis.cz/index.php?pg=ehis-2014 (accessed Sept 20, 2021). (in Czech)
  16. Khalilikhah M., Heaslip K. (2016): Analysis of factors temporarily impacting traffic sign readability. International Journal of Transportation Science and Technology, 5: 60-67. Go to original source...
  17. Kühn M, Bende J. (2011): Risiko von Traktoren im Straßenverkehr. [Dataset]. Available at https://udv.de/download/file/fid/1480 (accessed Oct 1, 2021). (in German)
  18. Lee S.B., Lee C.G., Hong I.K. (2015): Design of MMA-type thermosetting road markings to improve reflectivity. Applied Chemistry for Engineering, 26: 439-444. Go to original source...
  19. Luger E. (2020): Tödliche Traktorunfälle [Dataset]. Available at http://www.traktortest.at/traktortest_at-Dateien/Fatal%20Tractor%20%20Accidents%202019%20-%20lessons%20learned%20-%20FJ-BLT-Wieselburg.pdf (accessed Oct 1, 2021). (in German)
  20. Ministry of Transportation of the Czech Republic (2015): TP 66 - Zásady pro označování pracovních míst na pozemních komunikacích. Praha, Ředitelství silnic a dálnic ČR: 1-160. (in Czech)
  21. Nowotny T.K., Velinsky S.A., Lasky T.A., Donohoe S.P. (2012): Test driven design of a system for removing graffiti from retroreflective signs. Mechanics Based Design of Structures and Machines, 40: 366-379. Go to original source...
  22. Obeidat M., Rys M., Russell E.R. (2015): Overhead Guide Sign Retroreflectivity and Illumination. Topeka, Kansas State University Transportation Center: 1-144.
  23. Paniati J.F. (1989): Retroreflectivity research to enhance driver safety. TR News, 140: 13-15.
  24. Pigner M. (1997): Serigraphs of retroreflective retroreflective sheetings for traffic signs: Study of the influence of manufacturing parameters on final quality. Bulletin des Laboratoires des Ponts et Chaussees, 207: 33-43. (in French)
  25. Prášil M. (2006): Svislé dopravní značení. Praha, Ředitelství silnic a dálnic ČR: 2-10. (in Czech)
  26. Schnell T., Yekhshatyan L., Daiker R. (2009): Effect of luminance and text size on information acquisition time from traffic signs. Transportation Research Record, 2122: 52-62. Go to original source...
  27. Sørensen K. (2011): Durability test of retro-reflecting materials for traffic signs at Nordic test sites - Ageing model for the retro-reflectivity after further exposure. Nordisk Møde for Forbedret Vejudstyr, NMF: 1-13.
  28. United Nations Secretariat (2008): Population Prospects. [Dataset]. Available at http://esa.un.org/unpp (accessed Oct 1, 2021)
  29. Woltman H.L. (1984): Sign maintenance management. Transportation Research Record, 979: 24-28.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.