Res. Agr. Eng., 2022, 68(3):120-130 | DOI: 10.17221/73/2021-RAE

Drying kinetics and mathematical modelling of Arundo donax L. canes, a potential renewable fuelOriginal Paper

Verónica Córdoba ORCID...*,1,2, Alejandra Manzur1, Estela Santalla1
1 LABYMA, INTELYMEC, Faculty of Engineering, National University of the Centre of the Buenos Aires Province (UNCPBA), Olavarría, Buenos Aires, Argentina
2 National Scientific and Technical Research Council (CONICET), Argentina

Arundo donax L. is an energy crop with the potential use as a renewable fuel. This study focused on the drying process of the canes in field and laboratory conditions to determine the effect of the harvest conditioning on the kinetics parameters of whole and slashed canes. The lab drying test was conducted in a thin layer dryer at temperatures between 30 and 80 °C and a 0.5 m.s-1 air velocity. The whole and slashed canes showed faster water evaporation rates as the temperature increased, but the slashed canes achieved a lower final moisture content in a shorter time. The effective diffusion coefficient varied between 3.67 × 10-12 and 1.28 × 10-11 m2.s-1 and showed a significant effect of the temperature, but not between samples; its temperature dependence was determined by the Arrhenius equation giving activation energies of 24.4 and 20.2 kJ.mol-1 for the whole and slashed canes respectively, not significantly different. The modelling of the experimental drying data to six thin layer drying models achieved good performance (R2 > 95.9%), although the Logarithmic model showed the best fit for both samples (R2 > 99.4%). In addition, a temperature dependent equation for the drying constant was included in the Logarithmic model for the whole and slashed canes which predicted with good performance (R2 > 97%) the moisture loss. The developed tools constitute an adequate model for the simulation of the drying process of Arundo donax L. that could be useful for the design of various equipment and systems.

Keywords: diffusivity; Fick's diffusion model; giant reed; thin-layer drying

Published: March 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Córdoba V, Manzur A, Santalla E. Drying kinetics and mathematical modelling of Arundo donax L. canes, a potential renewable fuel. Res. Agr. Eng. 2022;68(3):120-130. doi: 10.17221/73/2021-RAE.
Download citation

References

  1. Abreu M., Reis A., Moura P., Fernando A.L., Luis A., Quental L., Patinha P., Girio F. (2020): Evaluation of the potential of biomass to energy in Portugal - Conclusions from the CONVERTE project. Energies, 13: 937. Go to original source...
  2. Agote Goyalde N., De Castro Melo E., Pereira Rocha R., Duarte Goneli A.L., Araújo F.L. (2009): Mathematical modeling of the drying kinetics of sugarcane slice. Revista Brasileira de Produtos Agroindustriais, 11: 117-121. Go to original source...
  3. ASAE (2012): ASAE Standard S358.2 (DEC93) - Moisture measurement - Forages.
  4. Barrado N., Elizalde F., Rodríguez D., Laddaga J., Hernández G., Bongiorno C., Vilatte C., D'Alfonso C., Aguas L., Confalone A. (2019): Arundo donax, una alternativa para producir energía en el centro de la provincia de Buenos Aires. IV Congreso Nacional de Ciencia y Tecnología Ambiental, 176 (in Spanish).
  5. Basso M., Cukierman A. (2005): Arundo donax - Based activated carbons for aqueous-phase adsorption of volatile organic compounds. Industrial & Engineering Chemistry Research, 44: 2091-2100. Go to original source...
  6. Bhaskar T., Bhavya B., Singh R., Naik D.V., Kumar A., Goyal H.B. (2011): Chapter 3 - Thermochemical conversion of biomass to biofuels. In: Pandey A., Larroche C., Ricke S.C., Dussap C.G., Gnansounou E. (eds): Biofuels. Cambridge, Academic Press: 51-77. Go to original source...
  7. Burova N., Kislitsina N., Gr yazina F., Pashkova G., Kuzminykh A. (2017): A review of techniques for drying food products in vacuum drying plants and methods for quality control of dried samples (technical note). Espacios, 38: 35-43.
  8. Chandra P.K., Singh R.P. (1995): Applied Numerical Methods for Food and Agricultural Engineers. CRC Press.
  9. Chen S., Danao M. (2015): Modeling the equilibrium moisture content (EMC) of Miscanthus sinensis, miscane, energy cane, and energy sorghum. Fuel, 147: 18-26. Go to original source...
  10. Christou M., Alexopoulou E., Cosentino S.L., Copani V., Nogues S., Sanchez E., Monti A., Walter Zegada-Lizarazu L., Pari, A. (2018): Giant reed: From production to end use. In: Alexopoulou E. (ed.): Perennial Grasses for Bioenergy and Bioproducts: Production, Uses, Sustainability and Markets for Giant Reed, Miscanthus, Switchgrass, Reed Canary Grass and Bamboo. London, Academic Press: 64-75. Go to original source...
  11. Córdoba V., Manzur A., Santalla E. (2021): Evaluación tecnológica del potencial energético y ambiental del Arundo donax L. In: III Jornadas Internacionales y V Nacionales de Ambiente 2021, May 12-14, 2021, online (in Spanish).
  12. Crank J. (1979): The Mathematics of Diffusion. London and New York, Oxford University Press.
  13. Falasca S., Flores Marco N., Galvani G. (2011): ¿Puede usarse una especie invasora como Arundo donax (caña común) con fines energéticos en Argentina? Available at https://inta.gob.ar/sites/default/files/script-tmp-inta_-_arundo_donax_con_fines_energeticos_en_argentin.pdf (in Spanish) (accessed Sept 27, 2021).
  14. Garcia-Perez A., Englund K., Wang Z., Lewis T., Smith M., Zhou S., Das O., Pelaez-Samaniego M. (2011): Arundo donax sample preparation, torrefaction and analyses - Final report to the Portland General Electric Company. Available at https://assets.ctfassets.net/416ywc1laqmd/6bJmuBeWhCfmfpQRJAe9gq/c7ac5559392ab1fcbcdb6f5deecf4bf4/portland-ge-final-report.pdf (accessed Sept 27, 2021).
  15. Gilbert P., Ryu C., Sharifi V., Swithenbank J. (2009): Effect of process parameters on pelletisation of herbaceous crops. Fuel, 88: 1491-1497. Go to original source...
  16. Henderson S.M. (1974): Progress in Developing the Thin Layer Drying Equation. ASAE, 17: 1167-1169. Go to original source...
  17. Henderson S.M., Pabis S. (1961): Grain drying theory: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6: 169-174.
  18. Jambor A., Torok A. (2019): The economics of Arundo donax - A systematic literature review. Sustainability, 11: 1-22. Go to original source...
  19. Lewis W. (1921): The rate of drying of solid materials. Industrial & Engineering Chemistry, 13: 427-432. Go to original source...
  20. Li Y., Liu H. (2000): High-pressure densification of wood residues to form an upgraded fuel. Biomass and Bioenergy, 19: 177-186. Go to original source...
  21. Mantineo M., D'Agosta G., Copani V., Patanè C., Cosentino S. (2009): Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114: 204-213. Go to original source...
  22. Midilli A., Kucuk H., Yapar Z. (2002): A new model for singlelayer drying. Drying Technology, 20: 1503-1513. Go to original source...
  23. Obataya E., Gril J., Perré P. (2005): Shrinkage of cane (Arundo donax) II. Effect of drying condition on the intensity of cell collapse. Journal of Wood Science, 51: 130-135. Go to original source...
  24. Page G. (1949): Factors Influencing the Maximum Rate of Air Drying Shelled Corn in Thin-Layers. Purdue University.
  25. Pari L., Scarfone A., Santangelo E., Figorilli S., Crognale S., Petruccioli M., Suardi A., Gallucci F., Barontini M. (2015): Alternative storage systems of Arundo donax L. and characterization of the stored biomass. Industrial Crops and Products, 75: 59-65. Go to original source...
  26. Pereyra Müller N., Manzur A., Santalla E., Córdoba V. (2021): Evaluación de Arundo donax como biocombustible para la producción de energía térmica. Energías Renovables y Medio Ambiente, 48: 11-17 (in Spanish).
  27. Rodríguez D., Lázaro L., Ressia J., Laddaga J., Grosso J., Bongiorno C., Confalone A. (2021): Producción de biomasa de Arundo donax L., un cultivo bioenergético para el centro de la provincia de Buenos Aires. Revista Argentina de Meteorología RADA, 12: 15-20 (in Spanish).
  28. Santalla E.M., Mascheroni R.H. (2010): Moisture diffusivity in high oleic sunflower seeds and kernels. International Journal of Food Properties, 13: 464-474. Go to original source...
  29. Scheufele F., Ribeiro C., Módenes A., Espinoza-Quiñones F., Bergamasco R., Pereira N. (2015): Assessment of drying temperature of sugarcane bagasse on sorption of reactive blue 5G dye. Fibers and Polymers, 16: 1646-1656. Go to original source...
  30. Villalba Vidales J., Arzola De La Peña N. (2015): Modelos matemáticos y experimentales sobre el secado de biomasa. Ingeniería y Desarrollo. Universidad del Norte, 33: 301-330 (in Spanish). Go to original source...
  31. Yancey N., Wright C., Connor C. (2009): Preprocessing moist lignocellulosic biomass for biorefinery feedstocks. In: Procceedings of ASABE 2009 Annual International Meeting, June 21-24, 2009, Reno, USA: 1-17.
  32. Williams C., Biswas T. (2010): Commercial Potential of Giant Reed for Pulp, Paper and Biofuel Production. Adelaide, Rural Industries Research and Development Corporation.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.