Res. Agr. Eng., 2022, 68(3):157-167 | DOI: 10.17221/2/2021-RAE
Inactivation of anti-nutrients in soybeans via micronisationOriginal Paper
- 1 Department of Tractors, Agricultural Machinery and Transport Technologies, Engineering and Technology Faculty, Sumy National Agrarian University, Sumy, Ukraine
- 2 Department of Technical Services, Engineering and Technology Faculty, Sumy National Agrarian University, Sumy, Ukraine
- 3 Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech republic
The soybean (Glycine max) is used as one of the main protein sources in various animal fodders. However, the presence of anti-nutrients significantly reduces the nutritional value of the bean. To solve this problem, the present work is devoted to the inactivation of the anti-nutrients in soybeans by the use of micronisation as a means of thermal treatment. The purpose of the work is to improve the process of soybean micronisation by determining the impact of the process parameters on the soybean's quality and energy performance, namely - the urease activity and specific energy consumption. A multifactor experiment was carried out using an experimental device for the heat treatment of the beans. The influence of the temperature and time of the heat treatment on the level of inactivation of anti-nutrients and the specific energy consumption for beans with different sizes were established. The modes of heat treatment which allow the inactivation of the anti-nutrients in the soybeans to admissible standard values were also defined. The obtained and studied functional dependencies of the quality and energy indices on the technological factors of the soybean micronisation allow one to improve this process and technical means for its implementation in reducing the anti-nutrient content.
Keywords: infrared rays; specific energy consumption; thermal treatment; urease
Published: March 15, 2022 Show citation
References
- Avilés-Gaxiola S., Chuck-Hernández C., Serna Saldívar S.O. (2018): Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science, 83: 17-29.
Go to original source...
Go to PubMed...
- Braginets N.V. (1989): Micronization of grain for fodder purposes. In: Mechanization and Electrification of Agriculture. Moscow, Agropromizdat: 19-31.
- Cai J.-S., Feng J.Y., Ni Z.J., Ma R.H., Thakur K., Wang S., Hu F., Zhang J.G., Wei Z.J. (2021): An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends in Food Science and Technology, 112: 676-689.
Go to original source...
- Chen Y. (2015): Effects of micronization, ethanol washing, and enzymatic hydrolysis processing alone or in combination on trypsin inhibitors, lipoxygenase activities and selected "beany" flavor related compounds in soybean flour. [M.Sc. Thesis]. Manitoba, University of Manitoba.
- Deepa C., Hebbar H.U. (2016): Effect of high-temperature short-time 'micronization' of grains on product quality and cooking characteristics. Food Engineering Reviews, 8: 201-213.
Go to original source...
- DSTU (2015): DSTU 8365:2015 - Oilcakes and concentrated fodders. Method of urease activity determination. Kiyv, DSTU Ukraine (in Ukrainian).
- Dudley-Cash W.A. (1999): Methods for determining quality of soybean protein important. Feedstuffs, 71: 10-11.
- Fasina O.O., Tyler R.T., Pickard M.D. (2001): Effect of infrared heating on properties of legume seeds. International Journal of Food Science & Technology, 36: 79-90.
Go to original source...
- Ferreira S.L., Bruns R.E., Ferreira H.S., Matos G.D., David J.M., Brandão G.C., da Silva E.G., Portugal L.A., dos Reis P.S., Souza A.S., dos Santos W.N. (2007): Box-Behnken design: An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597: 179-86.
Go to original source...
Go to PubMed...
- Friedman M., Brandon D.L. (2001): Nutritional and health benefits of soy proteins. Journal of Agricultural and Food Chemistry, 49: 1069-1086.
Go to original source...
Go to PubMed...
- Garnsworthy P.C., Wiseman J. (2009): Recent Advances in Animal Nutrition 2008. Nottingham, Nottingham University Press.
Go to original source...
- Irvin E. (1994): Implications of antinutritional components in soybean foods, Critical Reviews in Food Science and Nutrition, 34: 31-67.
Go to original source...
Go to PubMed...
- Leeson S., Summers J.D. (2008): Commercial Poultry Nutrition. Guelph, Nottingham University Press.
Go to original source...
- Lehmali I.F., Jafari M.A. (2019): Effect of different thermal and non-thermal processing methods on chemical composition, quality indicators and apparent mutrient digestibility of full-fat soybean. Brazilian Journal of Poultry Science, 21: 2019-1099.
Go to original source...
- Leterme P., Beckers Y., Thewis A. (1988): Inter- and intravarietal variability of the trypsin inhibitors content of peas and its influence on apparent digestibility of crude protein by growing pigs. In: Huismans J., Van der Poel T.F.J., Liener I.E. (eds): Recent Advances of Research in Antinutritional Factors in Legume Seeds. Wageningen, Pudoc: 121-124.
- Liener I.E. (1962): Toxic protein from the soybean. II. Physical characterization. The American Journal of Clinical Nutrition, 11: 281-286.
Go to original source...
Go to PubMed...
- Ligidov V.A. (2007): Efficiency improvement of micronizer with transverse linear infrared emitters in the processing of grain and cereals. [PhD. Thesis]. Moscow, Moscow State University of Food Production (in Russian).
- Malcolmson L., Han J. (2019): Pulse processing and utilization of pulse ingredients in foods. In: Dahl W.: Health Benefits of Pulses. Cham, Springer: 129-149.
Go to original source...
- Martínez M.L., Marín M.A., Ribotta P.D. (2013): Optimization of soybean heat-treating using a fluidized bed dryer. Journal of Food Science and Technology, 50: 1144-1150.
Go to original source...
Go to PubMed...
- Melcion J.P., Peel A.F.B. (1993): Process technology and antinutritional factors: Principles, adequacy and process optimization. In: van der Poel A.F.B., Huisman J., Saini H.S. (eds): Recent Advances of Research in Antinutritional Factors in Legume Seeds. Proceeding of 2nd International Workshop on Antinutritional Factors (ANFs) in Legume Seeds. Dec 1-3, 1993, Wageningen, Netherlands: 419-434.
- Mengesha M. (2016): Maximizing the nutritional value of unprocessed soybean meal through supplementation with complex microbial enzyme products. [PhD. Thesis]. Biddeford, University of New England.
- Morgunova, N.L., Rudik, F.Y., Semilet N.A., Lovtsova L.G., Ivanova Z.I., Pfeifer S.A. (2020): Technology for reducing urease activity in soybeans. In: IOP Conference Series: Materials Science and Engineering, 862: 062005.
Go to original source...
- Obertukh Y.V. (2003): Development of methods for neutralizing antinutrients of soybean grains when using for feeding purposes. [PhD. Thesis]. Vinnitsa, Institute of Fodders (in Ukrainian).
- Palacios M.F., Easter R.A., Soltwedel K.T., Parsons C.M., Douglas M.W., Hymowitz T., Pettigrew J.E. (2004): Effect of soybean variety and processing on growth performance of young chicks and pigs. Journal of Animal Science, 82: 1108-1114.
Go to original source...
Go to PubMed...
- Plavynskyi V.I., Saienko A.V., Sarzhanov O.A., Plavynska S.V., Plavynskyi R.A. (2010): Device for heat treatment of soybeans. Patent UA 90123, C2 (in Ukrainian).
- Qin G., Elst E.R., Bosch M.W., Poel A.F.B. (1996): Thermal processing of whole soya beans: Studies on the inactivation of antinutritional factors and effects on ileal digestibility in piglets. Animal Feed Science Technology, 57: 313-324.
Go to original source...
- Ruis N. (2013): Activity of urease in soybean meal - A new look. Combined Feed, 10: 59-61.
- Rui X., Boye J.L., Ribereau S., Simpson B.K., Prasher S.O. (2011): Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseouls vulgaris legume varieties. Food Research International, 44: 2497-2504.
Go to original source...
- Sońta M., Rekiel A. (2020): Legumes - Use for nutritional and feeding purposes. Journal of Elementology, 25: 835-849.
Go to original source...
- Spiridonov A.A. (1981): Planning an Experiment in the Study of Technological Processes. Moscow, Mashinostroenie (in Russian).
- Traksler І.S. (2008): Substantiation of rational parameters and operating modes of machines for soybean processing. [PhD. Thesis]. Kyiv, National Agricultural University (in Ukrainian).
- Vagadia B.H., Vanga S.K., Raghavan V. (2017): Inactivation methods of soybean trypsin inhibitor - A review. Trends in Food Science & Technology, 64: 115-125.
Go to original source...
- White C.E., Campbell D.R., McDowell L.R. (2000): Effects of dry matter content on trypsin inhibitors and urease activity in heat treated soya beans fed to weaned piglets. Animal Feed Science and Technology, 87: 105-115.
Go to original source...
- Wiriyaumpaiwong S., Soponronnarit S., Prachayawarakorn S. (2004): Comparative study of heating processes for full-fat soybeans. Journal of Food Engineering, 65: 371-382.
Go to original source...
- Yalçin S., Basman A. (2015): Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples. Food Chemistry, 169: 203-210.
Go to original source...
Go to PubMed...
- Zilic S., Bozovic I., Sukalovic V.H.T. (2012): Thermal inactivation of soybean bioactive proteins. International Journal of Food Engineering, 8: 1556-3758.
Go to original source...
- Zverev S.V., Sesikashvili O.S. (2018): Modelling of urease thermal inactivation processes in soybean at high-temperature micronization. Potravinarstvo, 12: 512-519 (in Slovak).
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.