Res. Agr. Eng., 2023, 69(4):159-166 | DOI: 10.17221/72/2022-RAE

Mathematical modeling of drying parameters of moringa oleifera leaves in a cabinet dryeOriginal Paper

Timothy Adekanye*1,2, Abiodun Okunola1,3, Olumuyiwa Moses1,3, Endurance Idahosa1, Yisa Boye1, Aminu Saleh4
1 Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
2 Landmark University SDG 1 (No Poverty Research Group), Omu-Aran, Kwara State, Nigeria
3 Landmark University SDG 2 (Zero Hunger Research Group), Omu-Aran, Kwara State, Nigeria
4 Department of Agricultural and Bio-Resources Engineering, Ahmadu Bello University, Zaria, Kaduna State, Nigeria

This study focused on drying moringa leaves using a cabinet dryer. The impact of the 40, 50, and 60 °C drying air temperatures on the moisture content of the leaves at a constant air velocity with variation in weight (40, 80, and 120 g) was considered. Ten drying models were fitted to the drying data to describe the drying parameters of moringa leaves. The best model was chosen based on the highest coefficient of determination (R2), and the lowest sum of square error (SSE) and root mean square error (RMSE) values. The Henderson and Pabis model best described the drying characteristics of the moringa leaves having the highest R2 (0.9888) and lowest SSE (0.0401) and RMSE (0.0604). The effective moisture diffusivity increased with the temperatures ranging from 8.72 × 10–9 to 1.40 × 10–8 m2·s–1. The activation energy ranged from 90.4636, 40.4884, and 22.7466 KJ·mol–1 for 40, 80, and 120 g, respectively.

Keywords: agriculture; coefficient of determination; drying temperature; moisture diffusivity; thin layer drying

Accepted: June 14, 2023; Prepublished online: October 31, 2023; Published: November 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Adekanye T, Okunola A, Moses O, Idahosa E, Boye Y, Saleh A. Mathematical modeling of drying parameters of moringa oleifera leaves in a cabinet drye. Res. Agr. Eng. 2023;69(4):159-166. doi: 10.17221/72/2022-RAE.
Download citation

References

  1. Adekanye T.A., Adegbenro V.O., Saliu K.R. (2016): Development of maize on cob dryer for small-scale farmers. Scientia Agriculturae, 14: 172-178. Go to original source...
  2. Ajala A.S., Aboiye A.O, Popoola, J.O., Adeyanju J.A. (2012): Drying characteristics and mathematical modelling of Cassava chips. Chemical and Process Engineering Research, 4: 1-9.
  3. Akowuah J.O., Bart-Plange O., Dzisi K.A. (2021): Thin layer mathematical modelling of white maize in a mobile solar-biomass hybrid dryer. Research in Agricultural Engineering, 67: 74-83. Go to original source...
  4. Ali M.A., Yusof Y.A., China N.L., Ibrahima M.N., Basrab S.M.A. (2014): Drying kinetics and colour analysis of Moringa oleifera Leaves. Agriculture and Agricultural Science Procedia, 2: 394-400. Go to original source...
  5. ASAE (2003): Agricultural Engineer Year Book. ASAE Standard: 5-10.
  6. Ashtiani S.H.M., Salarikia A., Golzarian M.R. (2017): Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Information Processing in Agriculture, 4: 128-139. Go to original source...
  7. Ayoola P.O., Goodluck E.O. (2015): Modeling drying characteristics of moringa (Moringa oleifera) Leaves under a mechanical convective cabinet dryer. Annals Food Science and Technology, 1: 27-36.
  8. Bal L.M., Kar A., Satya S. (2010): Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying. International Journal of Food Science & Technology, 45: 2321-2328. Go to original source...
  9. Chua L.Y., Chong C.H., Chua B.L., Figiel A. (2019): Influence of drying methods on the antibacterial, antioxidant and essential oil volatile composition of herbs: A review. Food and Bioprocess Technology, 12: 450-476. Go to original source...
  10. Demiray E., Tulek Y. (2014): Drying characteristics of garlic (Allium sativum L) slices in a convective hot air dryer. Heat and Mass Transfer 50: 779-786. Go to original source...
  11. Doymaz I. (2004): Thin-layer drying behaviour of mint leaves. Journal of Food Engineering, 74: 370-375. Go to original source...
  12. Doymaz I. (2005): Drying characteristics and kinetics of okra. Journal of Food Engineering, 69: 275-279. Go to original source...
  13. Doymaz I., Tugrul N., Pala M. (2006): Drying characteristics of dill and parsley leaves. Journal of Food Engineering, 77: 559-565. Go to original source...
  14. Doymaz I. (2008): Drying of leek slices using heated air. Journal of Food Process Engineering, 31: 721-737. Go to original source...
  15. Doymaz I., Ismail O. (2010): Drying and rehydration behaviours of green bell peppers. Food Science and Biotechnology, 19: 1449-1455. Go to original source...
  16. Doymaz I., Ismail O. (2011): Drying characteristics of sweet cherry. Food and Bioproducts Processing, 89: 31-38. Go to original source...
  17. Golpour I., Kaveh M., Chayjan R., Guiné R. (2020): Energetic and exergetic analysis of a convective drier: A case study of potato drying process. Open Agriculture, 5. 563-572. Go to original source...
  18. Hii C.L., Law C.L., Cloke M. (2009): Modeling using a new thin layer drying model and product quality of cocoa. Journal of Food Engineering, 90: 191-198. Go to original source...
  19. Koua K.B., Fassinou W.F., Gbaha P., Toure S. (2009): Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy, 34: 1594-1602. Go to original source...
  20. Lahsasni S., Kouhila M., Mahrouz M., Jaouhari J.T. (2004): Drying kinetics of prickly pear fruit (Opuntia ficus indica). Journal of Food Engineering, 61: 173-179. Go to original source...
  21. Minaei S., Motevali A., Najafi G., Mousavi Seyedi S.R. (2012): Influence of drying methods on activation energy, effective moisture diffusion and drying rate of pomegranate arils (Punica granatum). Australian Journal of Crop Science, 6: 584-591.
  22. Mirzaee E., Rafiee S., Keyhani A., Emam-Djomeh Z. (2009): Determining of moisture diffusivity and activation energy in drying of apricots. Research in Agricultural Engineering, 55: 114-120. Go to original source...
  23. Nwajinka C.O., Okpala C.D., Udoye B. (2014): Thin layer drying characteristics of cocoyam corm slices. International Journal of Agriculture and Biosciences, 3: 241-244.
  24. Nkwocha, A.C., Kamalu C.I.O., Dadet W.P., Uzondu F.N., Ogbonna O.C. (2015): Mathematical modelling of drying characteristics of Pepper (Capsicum annum). International Journal of Current Research, 7: 20010-20013.
  25. Ojediran J.O., Okonkwo C.E., Adeyi A.J., Adeyi O., Olaniran A.F., George N.E., Olayanju A.T. (2020): Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: Application of ANFIS in the prediction of drying kinetics. Heliyon, 6. e03555. Go to original source...
  26. Olabode Z., Akanbi C., Olunlade B., Adeola A. (2015): Effects of drying temperature on the nutrients of Moringa (Moringa oleifera) leaves and sensory attributes of dried leaves infusion. Direct Research Journal of Agriculture and Food Science, 3: 177-122.
  27. Okunola A., Adekanye T., Idahosa E. (2021): Energy and exergy analyses of okra drying process in a forced convection cabinet dryer. Research in Agricultural Engineering, 67: 8-16. Go to original source...
  28. Okunola A.A., Adekanye T.A., Okonkwo C.E., Kaveh M., Szymanek M., Idahosa E.O., Olayanju A.T., Wojciechowska K. (2023): Drying characteristics, kinetic modeling, energy and exergy analyses of water Yam (Dioscorea alata) in a hot air dryer. Energies, 16: 1569. Go to original source...
  29. Kumar P., Saha D. (2021): Drying knetics of maize cob using mathematical modelling. Journal of Agricultural Engineering, 58: 40-49. Go to original source...
  30. Premi M., Sharma H.K., Sarkar B.C., Singh C. (2010): Kinetics of drumstick leaves (Moringa oleifera) during convective drying. African Journal of Plant Science, 4: 391-400.
  31. Ramarao K.D.R., Razali Z., Somasundram C. (2021): Mathematical models to describe the drying process of Moringa oleifera leaves in a convective-air dryer. Czech Jounral of Food Sciencis, 39: 444-451. Go to original source...
  32. Rong L., Jing L., Qi H., Shao L., Yueping J. (2022). Moringa oleifera: A systematic review of its botany, traditional uses, phytochemistry, pharmacology and toxicity. Journal of Pharmacy and Pharmacology, 74: 296-320. Go to original source...
  33. Rudy S., Dziki D., Biernacka B., Krzykowski A., Rudy M., Gawlik-Dziki U., Kachel M. (2020): Drying characteristics of Dracocephalum moldavica leaves: Drying kinetics and physicochemical properties. Processes, 8: 509. Go to original source...
  34. Wang Z, Sun J., Liao X., Chen F., Zhao G., Wu J., Hu X. (2007): Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40: 39-46 Go to original source...
  35. Yaldiz O., Ertekin C., Uzun H.I. (2001): Mathematical modeling of thin layer solar drying of Sultana grapes. Energy, 26: 457-65. Go to original source...
  36. Zielinska M., Markowski M. (2012): Color characteristics of carrots: Effect of drying and rehydration. International Journal of Food Properties, 15: 450-466. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.