Res. Agr. Eng., 2024, 70(1):1-12 | DOI: 10.17221/15/2023-RAE

The state of agricultural digitalisation in HungaryReview

Dániel Fróna ORCID...
Department of Regional Economics and Sustainable Development, Institute of Rural Development, Regional Economics and Tourism Management, Faculty of Economics and Business, University of Debrecen, Debrecen, Hungary

In recent years, the concept of digitalization has gained increasing attention in the field of agriculture. The adoption of digital technologies such as sensors, drones, and precision farming tools has the potential to revolutionize how agricultural production is carried out, leading to increased efficiency, productivity, and sustainability. This study examines the current state of digitisation and the use of digital tools in agriculture among Hungarian farmers. The uptake of digitalisation has been slow, and more comprehensive policies and strategies are needed to improve progress. The study shows that while there are positive developments, such as the increasing use of precision technologies, there is still a lack of digital infrastructure and skills, as well as limited access to finance and information. The study concludes by making recommendations for policy makers, stakeholders and farmers to enhance the digitalisation of agriculture in Hungary.

Keywords: digital divide; sustainability; precision agriculture; technology

Received: January 31, 2023; Revised: May 9, 2023; Accepted: May 25, 2023; Prepublished online: February 27, 2024; Published: March 13, 2024  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Fróna D. The state of agricultural digitalisation in Hungary. Res. Agr. Eng. 2024;70(1):1-12. doi: 10.17221/15/2023-RAE.
Download citation

References

  1. Anderson R., Bayer P.E., Edwards D. (2020): Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56: 197-202. Go to original source...
  2. Annosi M.C., Brunetta F., Bimbo F., Kostoula M. (2021): Digitalization within food supply chains to prevent food waste. Drivers, barriers and collaboration practices. Industrial Marketing Management, 93: 208-220. Go to original source...
  3. Bai A., Kovách I., Czibere I., Megyesi B., Balogh P. (2022): Examining the adoption of drones and categorisation of precision elements among Hungarian precision farmers using a trans-theoretical model. Drones, 6: 200. Go to original source...
  4. Balafoutis A.T., Evert F.K.V., Fountas S. (2020): Smart farming technology trends: Economic and environmental effects, labor impact, and adoption readiness. Agronomy, 10: 743. Go to original source...
  5. Balasundram S.K., Shamshiri R.R., Sridhara S., Rizan N. (2023): The role of digital agriculture in mitigating climate change and ensuring food security: An overview. Sustainability, 15: 5325. Go to original source...
  6. Balogh P., Bai A., Czibere I., Kovách I., Fodor L., Bujdos Á., Birkner Z. (2021): Economic and social barriers of precision farming in Hungary. Agronomy, 11: 1112. Go to original source...
  7. Balogh P., Bujdos Á., Czibere I., Fodor L., Gabnai Z., Kovách I., Bai A. (2020): Main motivational factors of farmers adopting precision farming in Hungary. Agronomy, 10: 610. Go to original source...
  8. Barnes A.P., Soto I., Eory V., Beck B., Balafoutis A., Sánchez B., Gómez-Barbero M. (2019): Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy, 80: 163-174. Go to original source...
  9. Basso B., Antle J. (2020): Digital agriculture to design sustainable agricultural systems. Nature Sustainability, 3: 254-256. Go to original source...
  10. Beke E., Horvath R., Takacs-Gyorgy K. (2020): Industry 4.0 and current competencies. Naąe gospodarstvo/Our Economy: 66: 63-70. Go to original source...
  11. Benyam A., Soma T., Fraser E. (2021): Digital agricultural technologies for food loss and waste prevention and reduction: Global trends, adoption opportunities and barriers. Journal of Cleaner Production, 323: 129099. Go to original source...
  12. Bodirsky B.L., Dietrich J.P., Martinelli E., Stenstad A., Pradhan P., Gabrysch S., Rolinski S. (2020): The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection. Scientific Reports, 100: 1-14. Go to original source...
  13. Bongiovanni R., Lowenberg-DeBoer J. (2004): Precision agriculture and sustainability. Precision Agriculture, 5: 359-387. Go to original source...
  14. Boros-Papp S., Várallyai L. (2019): The opinion of farmers and small and medium-sized enterprises on the importance of ICT in Hajdú-Bihar County, Hungary. Journal of Agricultural Informatics, 10: 60-67. Go to original source...
  15. Brown T.C., Mahat V., Ramirez J.A. (2019): Adaptation to future water shortages in the United States caused by population growth and climate change. Earth's Future, 7: 219-234. Go to original source...
  16. Cisternas I., Velásquez I., Caro A., Rodríguez A. (2020): Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture, 176: 105626. Go to original source...
  17. Csányi G.M., Nagy D., Vági R., Vadász J.P., Orosz T. (2021): Challenges and open problems of legal document anonymization. Symmetry, 13: 1490. Go to original source...
  18. Digitális Jólét Program (2019): Magyarország Digitális Agrár Stratégiája 2019-2022. Available at https://digitalisjoletprogram.hu/hu/kiadvanyaink
  19. Endrődi-Kovács V., Stukovszky T. (2022): The adoption of industry 4.0 and digitalisation of Hungarian SMEs. Society and Economy, 44: 1380-158. Go to original source...
  20. Erdei E., Kossa G., Kovács S., Popp J., Oláh J. (2022): Examining the correlations between industry 4.0 assets, external and internal risk factors and business performance among Hungarian food companies. Amfiteatru Economic, 24: 143-158. Go to original source...
  21. European Commission (2022): The new common agricultural policy: 2023-2027. Available at https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/new-cap-2023-27_en
  22. Ezenne G., Jupp L., Mantel S., Tanner J. (2019): Current and potential capabilities of UAS for crop water productivity in precision agriculture. Agricultural Water Management: 218: 158-164. Go to original source...
  23. FAO I., UNICEF, WFP, WHO (2021): The state of food security and nutrition in the world 2021. Available at https://www.fao.org/3/cb4474en/cb4474en.pdf
  24. Finger R., Swinton S.M., El Benni N., Walter A. (2019): Precision farming at the nexus of agricultural production and the environment. Annual Review of Resource Economics, 11: 313-335. Go to original source...
  25. Fróna D., Kőmíves P.M. (2019): The specialities of the agricultural workforce (A mezőgazdasági munkaerő sajátosságai. GAZDÁLKODÁS: Scientific) Journal on Agricultural Economics, 63: 361-380. (In Hungarian).
  26. Fróna D., Szenderák J., Harangi-Rákos M. (2019): The challenge of feeding the world. Sustainability, 11: 5816. Go to original source...
  27. Gaál M., Molnar A., Illes I., Kiss A., Lámfalusi I., Kemény G. (2021). Where do we stand with digitalization? An assessment of digital transformation in Hungarian agriculture. In: Bio-Economy and Agri-production. Cambridge, Academic Press: 195-206. Go to original source...
  28. Gebbers R., Adamchuk V.I. (2010): Precision agriculture and food security. Science, 327: 828-831. Go to original source...
  29. Giller K.E., Delaune T., Silva J.V., Descheemaeker K., van de Ven G., Schut A.G., Taulya G. (2021): The future of farming: Who will produce our food? Food Security, 13: 1073-1099. Go to original source...
  30. HCSO (2021): Announcements, information. Hungarian Central Statistical Office. Available at https://www.ksh.hu/sajtoszoba_kozlemenyek_tajekoztatok_2021_04_08
  31. HCSO (2022a): Agricultural census results - Agricultural digitization. Hungarian Central Statistical Office. Available at https://www.ksh.hu/docs/hun/xftp/ac2020/agrardigitalizacio/index.html
  32. HCSO (2022b): The situation of agriculture, 2020. Hungarian Central Statistical Office. Available at https://www.ksh.hu/docs/hun/xftp/idoszaki/mezo/2020/index.html
  33. Hrustek L. (2020): Sustainability driven by agriculture through digital transformation. Sustainability, 12: 8596. Go to original source...
  34. Jeyakumar N.R., Victor V., Popp J., Fekete-Farkas M., Oláh J. (2021): Food innovation adoption and organic food consumerism-A cross national study between Malaysia and Hungary. Foods: 10: 363. Go to original source...
  35. Kang Y., Khan S., Ma X. (2009): Climate change impacts on crop yield, crop water productivity and food security-A review. Progress in Natural Science, 19: 1665-1674. Go to original source...
  36. Kendall H., Clark B., Li W., Jin S., Jones G.D., Chen J., Frewer L.J. (2022): Precision agriculture technology adoption: A qualitative study of small-scale commercial "family farms" located in the North China Plain. Precision Agriculture. 23: 1-33. Go to original source...
  37. Knapp S., van der Heijden M.G.A. (2018): A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications, 9: 3632. Go to original source...
  38. Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E. (2019): Soil and the intensification of agriculture for global food security. Environment International, 132: 105078. Go to original source...
  39. Kovács I., Husti I. (2018): The role of digitalization in the agricultural 4.0-how to connect the industry 4.0 to agriculture? Hungarian Agricultural Engineering, 33: 38-42. Go to original source...
  40. Kő A., Fehér P., Szabó Z. (2019): Digital transformation - A Hungarian overview. Economic and Business Review, 21: 3. Go to original source...
  41. Kroulík M., Kumhála F., Hůla J., Honzík I. (2009): The evaluation of agricultural machines field trafficking intensity for different soil tillage technologies. Soil and Tillage Research, 105: 171-175. Go to original source...
  42. Kumhálová J., Kumhála F., Kroulík M., Matějková ©. (2011): The impact of topography on soil properties and yield and the effects of weather conditions. Precision Agriculture: 12: 813-830. Go to original source...
  43. Lencsés E., Mészáros K. (2020): Business model innovation with precision farming technology from the farmers point of view. Hungarian Agricultural Engineering, 38: 79-81. Go to original source...
  44. Lencsés E., Takács I., Takács-György K. (2014): Farmers' perception of precision farming technology among Hungarian farmers. Sustainability, 6: 8452-8465. Go to original source...
  45. Loboguerrero A.M., Campbell B.M., Cooper P.J., Hansen J.W., Rosenstock T., Wollenberg E. (2019): Food and earth systems: priorities for climate change adaptation and mitigation for agriculture and food systems. Sustainability, 11: 1372. Go to original source...
  46. Maia R.F., Netto I., Tran A.L.H. (2017). Precision agriculture using remote monitoring systems in Brazil. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, October 19-22. Go to original source...
  47. Michels M., Fecke W., Feil J.-H., Musshoff O., Pigisch J., Krone S. (2020): Smartphone adoption and use in agriculture: empirical evidence from Germany. Precision Agriculture, 21: 403-425. Go to original source...
  48. Mizik T. (2022): How can precision farming work on a small scale? A systematic literature review. Precision Agriculture, 24: 1-23. Go to original source...
  49. Morone P., Koutinas A., Gathergood N., Arshadi M., Matharu A. (2019): Food waste: Challenges and opportunities for enhancing the emerging bio-economy. Journal of Cleaner Production, 221: 10-16. Go to original source...
  50. Mulla D. (2007). Geostatistics, remote sensing and precision farming. In: Ciba Foundation Symposium 210-Precision Agriculture: Spatial and Temporal Variability of Environmental Quality. Go to original source...
  51. Munesue Y., Masui T., Fushima T. (2015): The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environmental Economics and Policy Studies, 17: 43-77. Go to original source...
  52. Neményi M., Kovács A.J., Oláh J., Popp J., Erdei E., Harsányi E., Nyéki A. (2022): Challenges of sustainable agricultural development with special regard to internet of things: Survey. Progress in Agricultural Engineering Sciences, 18: 95-114. Go to original source...
  53. Novak J., Jánoskuti L., Havas A., Purta M., Marciniak T., Ignatowicz K., Yearwood K. (2018): The rise of digital challenger. McKinsey & Company.
  54. Pathak H.S., Brown P., Best T. (2019): A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture, 20: 1292-1316. Go to original source...
  55. Popp J., Erdei E., Oláh J. (2018): Outlook of precision farming in Hungary (A precíziós gazdálkodás kilátásai Magyarországon). International Journal of Engineering and Management Sciences, 3: 133-147. (In Hungarian) Go to original source...
  56. Popp J., Lakner Z., Harangi-Rakos M., Fari M. (2014): The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32: 559-578. Go to original source...
  57. Popp J., Pető K., Nagy J. (2013): Pesticide productivity and food security. A review. Agronomy for Sustainable Development, 33: 243-255. Go to original source...
  58. Pozza L.E., Field D.J. (2020): The science of soil security and food security. Soil Security, 1: 100002. Go to original source...
  59. Raj A., Dwivedi G., Sharma A., de Sousa Jabbour A.B.L., Rajak S. (2020): Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224: 107546. Go to original source...
  60. Ray D.K., Mueller N.D., West P.C., Foley J.A. (2013): Yield trends are insufficient to double global crop production by 2050. PloS one, 8: e66428. Go to original source...
  61. Smit S., Tyreman M., Mischke J., Ernst P., Hazan E., Novák J., Dagorret G. (2022): Securing Europe's competitiveness - Addressing its technology gap. Available at mckinsey.com/~/media/mckinsey/business%20functions/strategy%20and%20corporate%20finance/our%20insights/securing%20europes%20competitiveness%20addressing%20its%20technology%20gap/securing-europes-competitiveness-addressing-its-technology-gap-september-2022.pdf
  62. Somosi S., Számfira G. (2020): Agriculture 4.0 in Hungary : The challenges of 4th industrial revolution in Hungarian agriculture within the frameworks of the common agricultural policy. Mezőgazdaság - Magyarország, 21: 162-189.
  63. Srbinovska M., Gavrovski C., Dimcev V., Krkoleva A., Borozan V. (2015): Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88: 297-307. Go to original source...
  64. Takácsné György K. (2020): Interactions between sustainable management and economies of scale (A fenntartható gazdálkodás és a méretgazdaságosság kölcsönhatásai). GAZDÁLKODÁS: Scientific Journal on Agricultural Economics, 64: 365-386. (In Hungarian)
  65. Takácsné György K., Lámfalusi I., Molnár A., Sulyok D., Gaál M., Domán C., Kemény G. (2018): Precision agriculture in Hungary: Aassessment of perceptions and accounting records of FADN arable farms. Studies in Agricultural Economics, 120: 47-54. Go to original source...
  66. UN (2019): World population prospects 2019. United Nations. Available at https://population.un.org/wpp/Download/Standard/Population/
  67. Vásáry V., Biró S. (2020): Long-term vision of rural areas in Hungary, focusing on foresights. Rural Areas and Development, 17: 90-104.
  68. Vattai T. (2019). Smart policies help Hungary's MSMEs benefit from the fourth industrial revolution. International Trade Forum, 1: 26-27. Go to original source...
  69. Zhang N., Wang M., Wang N. (2002): Precision agriculture - A worldwide overview. Computers and Electronics in Agriculture, 36: 113-132. Go to original source...
  70. Zolkin A., Burda A., Avdeev Y.M., Fakhertdinova D. (2021): The main areas of application of information and digital technologies in the agro-industrial complex. IOP Conference Series: Earth and Environmental Science.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.