Res. Agr. Eng., 2020, 66(3):97-103 | DOI: 10.17221/26/2020-RAE

Electronic nose sensor development using ANN backpropagation for Lombok Agarwood classificationOriginal Paper

Farel Ahadyatulakbar Aditama1, Lalu Zulfikri1, Laili Mardiana1, Tri Mulyaningsih2, Nurul Qomariyah1, Rahadi Wirawan*,1
1 Department of Physics, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia
2 Department of Biology, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram, Indonesia

The aim of the present study is the development of an electronic nose system prototype for the classification of Gyrinops versteegii agarwood. The prototype consists of three gas sensors, i.e., TGS822, TGS2620, and TGS2610. The data acquisition and quality classification of the nose system are controlled by the Artificial Neural Network backpropagation algorithm in the Arduino Mega2650 microcontroller module. The testing result shows that an electronic nose can distinguish the quality of Gyrinops versteegii agarwood. The good-quality agarwood has an output of [1 -1], while the poor-quality agarwood has an output of [-1 1].

Keywords: prototype; gas sensor; arduino; quality; Gyrinops versteegii

Published: September 30, 2020  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Aditama FA, Zulfikri L, Mardiana L, Mulyaningsih T, Qomariyah N, Wirawan R. Electronic nose sensor development using ANN backpropagation for Lombok Agarwood classification. Res. Agr. Eng. 2020;66(3):97-103. doi: 10.17221/26/2020-RAE.
Download citation

References

  1. Adam A.Z., Lee S.Y., Mohamed R. (2017): Pharmacological properties of agarwood tea derived from Aquilaria (Thymelaeaceae) leaves: an emerging contemporary herbal drink. Journal of Herbal Medicine, 10: 37-44. Go to original source...
  2. Ahmaed D.T., Mohammed M., Masaad A.M., Tajuddin S.N. (2017): Investigation of agarwood compounds in Aquilaria malaccensis & Aquilaria rostrata chipwood by using solid phase microextraction. Biomedical Journal of Scientific & Technical Research, 1: 1-8. Go to original source...
  3. Ali M.M., Hashim N., Aziz A.S., Lasekan O. (2020): Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science & Technology, 99: 1-10. Go to original source...
  4. Arshak K., Moore E., Lyons G.M, Harris F., Clifford S. (2004): A review of gas sensors employed in electronic nose applications. Sensor Review, 24: 181-198. Go to original source...
  5. Azah M.A.N., Husni S.S., Mailina J., Sahrim L., Majid J.A., Faridz Z.M. (2013): Classification of agarwood (gaharu) by sesin content. Journal of Tropical Forest Science, 25: 213-219.
  6. Borah S., Hines E.L., Leeson M.S., Iliescu D.D., Bhuyan M., Gardner J.W. (2008): Neural network based electronic nose for classification of tea aroma. Sensing and Instrumentation for Food Quality and Safety, 2: 7-14. Go to original source...
  7. Dou T.X., Shi J.F., Li Y., Bi F.C., Gao H.J., Hu C.H., Li C.Y., Yang Q.S., Deng G.M., Sheng O., He W.D., Yi G.J., Dong T. (2020): Influence of harvest season on volatile aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with GC-MS. Scientia Horticulturae, 265: 1-7. Go to original source...
  8. Figaro (2000): Operating Principle of MOS Type, Figaro Engineering Inc., Japan., Available at https://www.figaro.co.jp/en/product/sensor/ (accessed Dec 4, 2019).
  9. Gamboa J.C.R., Albarracin E.E.S., da Silva A.J., Ferreira T.A.E. (2019): Electronic nose dataset for detection of wine spoilage thresholds. Data in Brief, 25: 1-6. Go to original source... Go to PubMed...
  10. Hashim Y.Z.H-Y., Ismail N.I., Abbas P. (2014): Analysis of chemical compounds of agarwood oil from different species by gas chromatography mass spectrometry (GCMS). IIUM Engineering Journal, 15: 55-60. Go to original source...
  11. Hashim Y.Z.H.-Y., Kerr P.G., Abbas P., Salleh H.M. (2016): Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. Journal of Ethnopharmacology, 189: 331-360. Go to original source... Go to PubMed...
  12. Ismail N., Ali N.A.M., Jamil M., Rahiman M.H.F., Tajuddin S.N., Taib M.N. (2014): A review study of agarwood oil and its quality analysis. Jurnal Teknologi, 68: 37-42. Go to original source...
  13. Ismail N., Rahiman M.H.F., Taib M.N., Ibrahim M., Zareen S., Tajuddin S.N. (2015): A Review on agarwood and its quality determination. 2015 IEEE 6th Control and System Graduate Research Colloquium (ICSGRC). Shah Alam, Aug 10-11, 2015: 103-108. Go to original source...
  14. Jayachandran K., Sekar I., Parthiban K.T., Amirtham D., Suresh K.K. (2014): Analysis of different of Agarwood (Aquilaria malaccensis Lamk.) oil through GC-MS. Indian Journal of Natural Priducts and Resources, 5: 44-47.
  15. Jung D. (2013): The cultural biography of agarwood - perfumery in eastern asia and the asian neighbourhood. Journal of the Royal Asiatic Society, 23: 103-125. Go to original source...
  16. Lee S.Y., Mohamed R. (2016): The origin and domestication of Aquilaria, an important agarwood-producing genus. In: Agarwood Science Behind the Fragrance. Singapore, Springer Nature. Go to original source...
  17. Lias S., Ali N.A.M., Jamil M., Zainal M.H., Ghani S.H.A. (2015): Classification of pure and mixture agarwood oils by electronic nose and discriminant factorial analysis (DFA). 2015 International Conference on Smart Sensors and Application (ICSSA). Kuala Lumpur, May 26-28, 2015: 7-10. Go to original source...
  18. Lias S., Ali N.A.M., Jamil M., Jalil A.M., Othman M.F. (2016): Discrimination of pure and mixture agarwood oils via electronic nose coupled with k-nn kfold classifier. Procedia Cemistry, 20: 63-68. Go to original source...
  19. Liu Y.Y, Wei J.H., Gao Z.H., Zhang Z., Lyu J.C. (2017): A review of quality assessment and grading for agarwood. Chinese Herbal Medicines, 9: 22-30. Go to original source...
  20. Aqmarina N.A., Siregar U.J., Miftahudin T.M. (2020): Identification of chemical compounds in agarwood-producing species Aquilaria malaccensis and Gyrinops versteegii. Journal of Forestry Research, 31: 1371-1380. Go to original source...
  21. Prasetyo E. (2014): Data Mining, Mengolah Data Menjadi Informasi Menggunakan Matlab. Yogyakarta, Andi Offset.
  22. Pripdeevech P., Khummueng W., Park S.K. (2011): Identification of odor-active components of agarwood essential oils from Thailand by solid phase microextraction-GC/MS and GC-O. Journal of Essential Oil Research, 23: 46-53. Go to original source...
  23. Sena, S. (2017): Pengenalan Deep Learning Part 3: BackPropagation Algorithm. Available at https://medium.com/@ samuelsena (accessed Apr 14, 2020).
  24. Subasinghe S.M.C.U.P., Hettiarachchi D.S. (2013): Agarwood resin production and resin quality of Gyrinops walla Gaertn. International Journal of Agricultural Sciences, 3: 357-262.
  25. Zulfikri L., Mardiana L., Wirawan R., Qomariyah N., Hadi K.A. (2018): Sistem Deteksi Gas Sederhana untuk Klasifikasi Gaharu Berbasis Sensor Gas Resistif. Prosiding SKF 2018, Bandung, Dec 4, 2018: 69-74.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.