Res. Agr. Eng., 2025, 71(1):50-59 | DOI: 10.17221/51/2024-RAE

Particle motion in mixed flow dryers: The effect of the wall inclination angle and frictionOriginal Paper

Adrienn Bablena1, János Beke1, István Keppler1
1 Institute of Technology, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary

In Europe, the weather patterns require harvested grain crops to be dried before storage to prevent significant quality loss. The uneven movement of grains inside the drying equipment is a key issue affecting the drying process, causing under- or over drying the harvested crops and thus leading to quality degradation and ultimately to financial losses. To characterise the unevenness of material flow, we introduced a dimensionless displacement ratio. This dimensionless parameter was suitable for comparing the uniformity of the material movement processes within the dryer. Using experimental investigations and numerical simulations, we determined the effect of the lamella inclination angle, the friction between the grain-wall and grain-grain on the uniformity of the flow. The linear functions approximating the quantitative relationships were determined in all the cases. Our findings indicate a significant variation in the displacement ratio ξ corresponding to different lamella inclination angles and friction values demonstrating that the discrete element modelling approach provides further opportunities for determining the optimal operating parameters of mixed flow dryers.

Keywords: agricultural particulate materials; drying; DEM; particle motion; optimisation

Received: June 25, 2024; Accepted: February 14, 2025; Prepublished online: March 10, 2025; Published: March 20, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Bablena A, Beke J, Keppler I. Particle motion in mixed flow dryers: The effect of the wall inclination angle and friction. Res. Agr. Eng. 2025;71(1):50-59. doi: 10.17221/51/2024-RAE.
Download citation

References

  1. Coetzee C.J., Nel R.G. (2014): Calibration of discrete element properties and the modeling of packed rock beds. Powder Technology, 264: 332-342. Go to original source...
  2. Coetzee C.J. (2017): Review: Calibration of the discrete element method. Powder Technology, 310: 104-142. Go to original source...
  3. Cundall P.A., Strack O.D.L. (1979): A discrete numerical model for granular assemblies. Geotechnique, 29: 47-65. Go to original source...
  4. Derakhshani S.M., Schott D.L., Lodewijks G. (2015): Micro-macro properties of quartz sand: experimental investigation and DEM simulation. Powder Technology, 269: 127-138. Go to original source...
  5. Golshan S., Esgandari B., Zarghami R., Blais B., Saleh K. (2020): Experimental and DEM studies of velocity profiles and residence time distribution of non-spherical particles in silos. Powder Technology, 373: 510-521. Go to original source...
  6. González-Montellano C., Ramírez Á., Gallego E., Ayuga F. (2011): Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chemical Engineering Science, 66: 5116-5126. Go to original source...
  7. Keppler I., Safranyik F., Oldal I. (2016): Shear test as calibration experiment for DEM simulations: a sensitivity study. Engineering Computations, 33: 742-758. Go to original source...
  8. Keppler I., Bablena A., Salman N.D., Kiss P. (2022): Discrete element model calibration based on in situ measurements. Engineering Computations, 39: 1947-1961. Go to original source...
  9. Keppler I., Bablena A. (2024): Optimal lamella geometry for mixed flow dryers. Archive of Applied Mechanics, Go to original source...
  10. 94: 961-972.
  11. Khatchatourian O.A., Binelo M.O., Lima R.F. (2014): Simulation of soya bean flow in mixed-flow dryers using DEM. Biosystems Engineering, 123: 68-76. Go to original source...
  12. Klinger J. (1977): Einige thermodynamische und strömungstechnische Untersuchungen zur Modellierung der Vorgänge in Dächerschachttrocknern für Getreidekörner. [PhD Thesis]. Dresden, Technische Universität Dresden.
  13. Mellmann J., Iroba K.L., Metzger T., Tsotsas E., Mészáros C., Farkas I. (2011): Moisture content and residence time distributions in mixed-flow grain dryers. Biosystems Engineering, 109: 297-307. Go to original source...
  14. Mellmann J., Teodorov T. (2011): Solids transport in mixed-flow dryers. Powder Technology, 205: 117-125. Go to original source...
  15. Moya M., Aguado P.J., Ayuga F. (2013): Mechanical properties of some granular agricultural materials used in silo design. International Agrophysics, 27: 181-193. Go to original source...
  16. Oldal I., Keppler I., Csizmadia B., Fenyvesi L. (2012): Outflow properties of silos: The effect of arching. Advanced Powder Technology, 23: 290-297. Go to original source...
  17. Simons T.A.H., Weiler R., Strege S., Bensmann S., Schilling M., Kwade, A. (2015): A ring shear tester as calibration experiment for DEM simulations in agitated mixers - a sensitivity study. Procedia Engineering, 102: 741-748. Go to original source...
  18. Weigler F., Mellmann J. (2014): Investigation of grain mass flow in a mixed flow dryer. Particuology, 12: 33-39. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.